CFP last date
20 January 2025
Reseach Article

Cluster Analysis: An Experimental Study

by Sathya Ramadass, Annamma Abraham
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 64 - Number 14
Year of Publication: 2013
Authors: Sathya Ramadass, Annamma Abraham
10.5120/10704-5622

Sathya Ramadass, Annamma Abraham . Cluster Analysis: An Experimental Study. International Journal of Computer Applications. 64, 14 ( February 2013), 32-36. DOI=10.5120/10704-5622

@article{ 10.5120/10704-5622,
author = { Sathya Ramadass, Annamma Abraham },
title = { Cluster Analysis: An Experimental Study },
journal = { International Journal of Computer Applications },
issue_date = { February 2013 },
volume = { 64 },
number = { 14 },
month = { February },
year = { 2013 },
issn = { 0975-8887 },
pages = { 32-36 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume64/number14/10704-5622/ },
doi = { 10.5120/10704-5622 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:16:27.786649+05:30
%A Sathya Ramadass
%A Annamma Abraham
%T Cluster Analysis: An Experimental Study
%J International Journal of Computer Applications
%@ 0975-8887
%V 64
%N 14
%P 32-36
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Clustering plays a vital role in machine based learning algorithms and in the present study, it is found that, the competitive learning algorithm that is very efficient for a number of non-linear real-time problems, offers efficient solution for clustering. This paper presents a comparative account of self-organizing models and proposes a hybrid self-organizing model for cluster analysis. The potential usefulness of cluster analysis for higher education scenario is taken to study in this paper.

References
  1. Kanungo, T. , David, M. M. , Nathan, S. N. , Piatko, C. D. , Silverman, R. and Wu, A. Y. 2002. An Efficient k-Means Clustering Algorithm: Analysis and Implementation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(7), 881-892.
  2. Jain, A. K. , Murty, M. N. , and Flynn, P. J. 1999. Data Clustering: A Review, ACM Computing Surveys, 31(3), 264-323.
  3. Basilio, B. P. , Calyampudi, R. R. , Rubens, L. O. , and Nascimento. E. M. 2010. Combining Unsupervised and Supervised Neural Networks in Cluster Analysis of Gamma-Ray Burst. J. Data Science, 8, 327-338.
  4. Pelliccioni, A. , Cotroneo, R. , and Pungì, F. 2010. Optimization Of Neural Net Training Using Patterns Selected By Cluster Analysis: A Case-Study Of Ozone Prediction Level. In the Conf. Artificial Intelligence and its Applications to the Environmental Sciences, Georgia
  5. Sathya, R. , and Abraham, A. 2011. Dual Competitive Architecture for Data Analysis. In. the Proc. of International Conference on Frontiers in Computer Science.
  6. Haykin, S. 2005. Neural Networks- A Comprehensive Foundation, 2nd ed. , Pearson Prentice Hall.
  7. Herbst, M. , Gupta, H. V. , and Casper, M. C. 2009. Mapping Model Behaviour Using Self-Organizing Maps, Hydrol. Earth Syst. Sci. , 13, 395–409.
  8. Sathya, R. , and Abraham, A. 2012. Unsupervised Control Paradigm for Performance Evaluation, Int. J. Computer Applications, 24(40), 27-31.
  9. Kohonen, T. Self-Organizing Maps, Springer Series in Information Sciences, 30, Springer, 1995, 1997, 2001, 3rd Ed.
  10. Sathya, R. , and Abhraham, A. 2010. Application of Kohonan SOM in Prediction. In the Proceeding of ICT conference. CCIS 101. Springer-Verlag Berlin Heidelberg, 313–318.
  11. Roberto, H. , Victor, L. , and Fernando, B. 2012. Spatial Clustering Using Hierarchical SOM, Chapter 12: Applications of Self-Organizing Maps, 231-250.
  12. Zheng, C. , Ahmad, K. , Long, A. , Volkov, Y. , Davies, A. , and Kelleher, D. 2007. Hierarchical SOMs: Segmentation of Cell-Migration Images, Part II, LNCS 4492, 938–946.
  13. Carpenter, G. A. , and Grossberg, S. 2002. Adaptive Resonance Theory, the Handbook of Brain Theory and Neural Networks, Second Edition, MIT Press.
  14. Mahapatra, S. S. , and Khan, M. S. 2007. A Neural Network Approach for Assessing Quality in Technical Education: An Empirical Study. , J. IJPQM, 2(3), 287-306.
Index Terms

Computer Science
Information Sciences

Keywords

ART Classification Clustering HSOM SOM Supervised learning Unsupervised learning