We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Some Separation Properties of the Digital Line

by Nirmala Mariappan, M. Lellis Thivagar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 64 - Number 10
Year of Publication: 2013
Authors: Nirmala Mariappan, M. Lellis Thivagar
10.5120/10674-5465

Nirmala Mariappan, M. Lellis Thivagar . Some Separation Properties of the Digital Line. International Journal of Computer Applications. 64, 10 ( February 2013), 39-41. DOI=10.5120/10674-5465

@article{ 10.5120/10674-5465,
author = { Nirmala Mariappan, M. Lellis Thivagar },
title = { Some Separation Properties of the Digital Line },
journal = { International Journal of Computer Applications },
issue_date = { February 2013 },
volume = { 64 },
number = { 10 },
month = { February },
year = { 2013 },
issn = { 0975-8887 },
pages = { 39-41 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume64/number10/10674-5465/ },
doi = { 10.5120/10674-5465 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:16:05.500295+05:30
%A Nirmala Mariappan
%A M. Lellis Thivagar
%T Some Separation Properties of the Digital Line
%J International Journal of Computer Applications
%@ 0975-8887
%V 64
%N 10
%P 39-41
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper deals with some separation properties of the digital line, semi-regularity, semi-normality, Tb separation and Tb separation of the digital line.

References
  1. M. E. Abd El-Monsef, S. Rose Mary and M. Lellis Thivagar, 2007, -closed sets in topological spaces, Assiut Univ. J. of Mathematics and Computer Science,36(1)43-51.
  2. S. P. Arya and T. Nour, 1990, Characterizations of s-normal spaces, Indian J. Pure Appl. Math. , 21(8), 717-719.
  3. P. Bhattacharya and B. K. Lahiri, 1987, Semi-generalised closed sets in topology, Indian J. Math. , 29, 375-382.
  4. J. Dontchev and M. Ganster, 1996, On generalized closed sets and T3/4 -spaces, Mem. Fac. Sci. Kochi Univ. (math),17,15-42.
  5. C. Dorsett, 1982, Semi-regular spaces, Soochow J. Math. 8, 45-53.
  6. C. Dorsett, 1985, Semi-normal spaces, Kyungpook Math. J25, 173-180.
  7. W. Dunham, 1977, T1/2-spaces, Kyungpook Math. J. 17,161-169.
  8. M. Fujimoto, S. Takigava, J. Dontchev, T. Noiri and H. Maki, 2006, The topological structures and groups of digital n-spaces, Kochi J. Math. , 1, 31-55.
  9. T. Fukutake, P. Sundaram and M. Sheik John, 2002, -ciosed sets, -open sets and -continuity in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 51,1-9.
  10. E. D. Khalimsky, 1970, Applications of connected ordered topological spaces in topology, Conference of math. departments of Povolsia.
  11. E. D. Khalimsky, 1987, Topologicals structures in computer sciences, J . Appl. Math. , Simulation, 1(1) , 25-40.
  12. E. D. Khalimsky, R. Kopperman and P. R. Meyer, 1990, Computer graphics and connected topologies on finite ordered sets, Topology Appl. , 36,1-17.
  13. T. Y. Kong, R. Kopperman and P. R. Meyer, 1991, A topologicai approach to digital topology, Amer. Math. Monthly, 98, 901- 917.
  14. V. Kovalevsky and R. Kopperman, 1994, Some topology-based image processing algorithms, Annals of the New York Academy of Sciences, Papers on General Topology and its Applications, 728, 174-182.
  15. N. Levine, 1963, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70, 36-41.
  16. N. Levine, 1970, Generalised closed sets in topology, Rend. circ. Mat. Palermo, 19, 89-96.
  17. S. Maheshwari and R. Prasada, 1978, On s-normai spaces, Bull. Math. Soc. Sci. R. S. Roumanie, 22(70) ( 1), 27-29.
  18. A. S. Mashhour, M. E. Abd El-Monsef and S. N. El Deeb, 1982, On pre continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt. , 53, 47-53.
  19. H. Maki, R. Devi and K. Balachandran, 1994, Associated topologies of generalized -closed sets and -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 15, 51-63.
  20. S. I. Nada, 2004, Semi-open and semi-closed sets in digital toprological spaces, Commun. Fac. Sci. Uniu. Ank. Series A1, 53(1), 1-6.
  21. O. Njastad, 1965, On some classes of nearly open sets, Pacific J. Math. 15, 961- 970.
  22. M. Sheik John, 2000, A study on generalizations of closed sets and continuous maps in topoiogical spaces, Ph. D. Thesis, Bharathiar University, Coimbatore, India.
  23. P. Sundaram and M. Sheik John, 1995, Weakly closed sets weak continuous maps in topological spaces, Proc. 82 nd Indian Sci. Cong. Calcutta, 49.
  24. P. Sundaram ancl M. Sheik John, 2000, On -closed sets in topology, Acta ciencia Indica, 26M (4), 389-392.
Index Terms

Computer Science
Information Sciences

Keywords

digital line semi-open sets g-closed sets -closed sets -closed sets semi-regular space semi-normal space.