CFP last date
20 December 2024
Reseach Article

A New Method to Grid Noisy cDNA Microarray Images Utilizing Denoising Techniques

by Islam A Fouad, Mai S Mabrouk, Amr A Sharawy
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 63 - Number 9
Year of Publication: 2013
Authors: Islam A Fouad, Mai S Mabrouk, Amr A Sharawy
10.5120/10497-5258

Islam A Fouad, Mai S Mabrouk, Amr A Sharawy . A New Method to Grid Noisy cDNA Microarray Images Utilizing Denoising Techniques. International Journal of Computer Applications. 63, 9 ( February 2013), 36-44. DOI=10.5120/10497-5258

@article{ 10.5120/10497-5258,
author = { Islam A Fouad, Mai S Mabrouk, Amr A Sharawy },
title = { A New Method to Grid Noisy cDNA Microarray Images Utilizing Denoising Techniques },
journal = { International Journal of Computer Applications },
issue_date = { February 2013 },
volume = { 63 },
number = { 9 },
month = { February },
year = { 2013 },
issn = { 0975-8887 },
pages = { 36-44 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume63/number9/10497-5258/ },
doi = { 10.5120/10497-5258 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:13:54.422894+05:30
%A Islam A Fouad
%A Mai S Mabrouk
%A Amr A Sharawy
%T A New Method to Grid Noisy cDNA Microarray Images Utilizing Denoising Techniques
%J International Journal of Computer Applications
%@ 0975-8887
%V 63
%N 9
%P 36-44
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

DNA Microarray is an innovative tool for gene studies in biomedical research, and its applications can vary from cancer diagnosis to human identification. It is capable of testing and extracting the expression of large number of genes in parallel. The gene expression process is divided into three basic steps: gridding, segmentation, and quantification. Automatic gridding; which is to assign coordinates to every element of the spot array, is considered the most challenging phase of microarrays image processing. For processing of microarray images, a new, automatic, fast and accurate approach is proposed for gridding noisy cDNA microarray images. In the real world, microarray image doesn't reflect measures of the fluorescence intensities for the dye of interest only, as different kinds of noise and artifacts can be observed. In this paper, a novel gridding method based on projection is developed accompanied by a pre-processing, post-processing, and refinement steps for noisy microarray images. Results revealed that the proposed method is used with high accuracy and minimal processing time and can be applied to various types of noisy microarray images.

References
  1. Hunter P. . . 2003. Microarray data analysis: Separating the curd from the whey. Scientist, 50-1.
  2. Jouenne V. Y. . . 2001. Critical Issues in the Processing of cDNA Microarray Images. Virginia Polytechnic Institue.
  3. Li Yi-bo. . 2004. Study of gridding gene chip images based on Genetic algorithm and deformable template. Tianjin: Hebei University of Technology.
  4. Hirata J. R. , Barrera J. , Hashimoto R. F. . 2001. Microarray Gridding by Mathematical Morphology. [C]//Proceeding of XIV, Brazilian Symposium on Computer Graphics and Image Processing.
  5. G. Antoniol and M. Ceccarelli. 2004. A Markov Random Field Approach to Microarray Image Gridding. Proc. 17th Int'l Conf. Pattern Recognition, 550-553.
  6. J. Buhler, T. Ideker and D. Haynor. Dapple. 2000. Improved Techniques for Findings Spots on DNA Microarrays. Technical ReportUWTR 2000-08-05, University of Washington.
  7. A. Jain, T. Tokuyasu, A. Snijderts, R. Segraves, D. Albertson and D. Pinkel. 2003. Fully Automatic Quantification of Microarray Image Data. Genome Res. , 12(2), pp. 325 – 332.
  8. Stefano Lonardi, Yu Luo. 2004. Gridding and Compression of Microarray Images. Computational Systems Bioinformatics Conference, CSB 2004. Proceedings, IEEE, 16-19, pp. 122-130.
  9. T. Tu. . 2002. Quantitative noise analysis for gene expression microarray experiments. Proc. Natl. Acad. Sci. , 99, 14031-6.
  10. Stanford Microarray Database (SMD; http://smd. stanford. edu/)
  11. Rise ML, Jones SR, Brown GD, von Schalburg KR. 2004. Microarray analyses identify molecular biomarkers of Atlantic salmon macrophage and hematopoietic kidney response to Piscirickettsiasalmonis infection. Physiol Genomics 15;20(1):21-35. PMID:15454580 (http://www. ncbi. nlm. nih. gov/geo/query/acc. cgi?acc=GSE1031)
  12. Matlab (R2012b) Image Processing Toolbox, Signal Processing Toolbox.
  13. Rafael C. Gonzalez and Richard E. Woods. Digital Image processing, Second Edition.
  14. AcharyaTinku, Ray AjoyK. . 2005. Image Processing Principles and Applications. John Wiley & Sons, Inc. .
  15. Y. Wang, F. Y. Shih, and M. Ma. 2005. Precise gridding of microarray images by detecting and correcting rotations in sub-arrays. In proceedings of Sixth Inter. Conf. on Computer Vision, Pattern Recognition and Image Processing, Salt Lake City, UT.
  16. J. F. Canny. 1986. A computational approach to edge detection. IEEE Trans Pattern Analysis and Machine Intelligence, 8(6), pp. 679-698.
  17. Li Qin, Luis Rueda, Adnan Ali and AliouneNgon. 2005. Spot Detection and Image Segmentation in DNA Microarray Data. Appl. Bioinformatics, 4(1), pp. 1-11.
  18. J. Angulo and J. Serra. 2003. Automatic analysis of DNA microarray images using mathematical morphology. Bioinformatics, 19(5), pp. 553-562.
  19. Patrick F. Dunn. 2005. Measurement and Data Analysis for Engineering and Science, New York: McGraw–Hill, ISBN 0-07-282538-3
  20. DeepaJ, and Tessamma Thomas. 2009. "Automatic Gridding of DNA Microarray Images using Optimum Subimage", International Journal of Recent Trends in Engineering, Vol. 1, No. 4.
  21. BasimAlhadidi, HussamNawwafFakhouri and Omar S. AIMousa. 2006. "cDNA Microarray Genome Image Processing Using Fixed Spot Position", American Journal of Applied Science 3(2): 17301734.
Index Terms

Computer Science
Information Sciences

Keywords

noisy microarray image gridding projection pre-processing post-processing refinement