CFP last date
20 February 2025
Reseach Article

Graphical and Database Analysis of New Sequence of Functions Involving the Bessel Function with MatLab Implementation

by Jaspreet Kaur, Ranbir Kaur Brar, Kanwarjit Singh, Mehar Chand
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 63 - Number 21
Year of Publication: 2013
Authors: Jaspreet Kaur, Ranbir Kaur Brar, Kanwarjit Singh, Mehar Chand
10.5120/10588-5246

Jaspreet Kaur, Ranbir Kaur Brar, Kanwarjit Singh, Mehar Chand . Graphical and Database Analysis of New Sequence of Functions Involving the Bessel Function with MatLab Implementation. International Journal of Computer Applications. 63, 21 ( February 2013), 11-24. DOI=10.5120/10588-5246

@article{ 10.5120/10588-5246,
author = { Jaspreet Kaur, Ranbir Kaur Brar, Kanwarjit Singh, Mehar Chand },
title = { Graphical and Database Analysis of New Sequence of Functions Involving the Bessel Function with MatLab Implementation },
journal = { International Journal of Computer Applications },
issue_date = { February 2013 },
volume = { 63 },
number = { 21 },
month = { February },
year = { 2013 },
issn = { 0975-8887 },
pages = { 11-24 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume63/number21/10588-5246/ },
doi = { 10.5120/10588-5246 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:14:56.891410+05:30
%A Jaspreet Kaur
%A Ranbir Kaur Brar
%A Kanwarjit Singh
%A Mehar Chand
%T Graphical and Database Analysis of New Sequence of Functions Involving the Bessel Function with MatLab Implementation
%J International Journal of Computer Applications
%@ 0975-8887
%V 63
%N 21
%P 11-24
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The aim of the present paper is an attempt to introduce a new sequence of functions , which involving the Bessel function of first kind By using operational technique, some interesting generating relations and summation formulas are obtained in sections 2 and 3. The remarkable thing of this paper is the crucial MATLAB coding of the new sequence of functions, Database and Graph established using the MATLAB (R2012a) in the section (5) and (6) for different values of parameters and n=1, 2, 3 and 4. The reader can establish Database and Graph using the same program for any value of n.

References
  1. Chak, A. M. , 1956, A class of polynomials and generalization of stirling numbers, Duke J. Math. , 23, 45-55.
  2. Chandel, R. C. S. , 1973, A new class of polynomials, Indian J. Math. , 15(1), 41-49.
  3. Chandel, R. C. S. , 1974, A further note on the class of polynomials ,Indian J. Math. , 16(1), 39-48.
  4. Chatterjea, S. K. , 1964, On generalization of Laguerre polynomials, Rend. Mat. Univ. Padova, 34, 180-190.
  5. Craven Thomas and Csordas George, 2006, The Fox-Wright functions and Laguerre multiplier sequences, J. Math. Anal. and Appl. 314, 109-125.
  6. Dunn, Peter K. , Understanding statistics using computer demonstrations. Journal of Computers in Mathematics and Science Teaching, 22 (3). pp. 261-281. ISSN 0731-9258, 2003.
  7. Gould, H. W. and Hopper, A. T. , 1962, Operational formulas connected with two generalizations of Hermite polynomials, Duck Math. J. , 29, 51-63.
  8. J. J. O' Connor and R. E. F. , Friedrich Wilhelm Bessel (School of Mathematics and Statistics University of St Andrews Scotland, 1997).
  9. Jennifer Niedziela, Bessel Functions and Their Applications, University of Tennessee-Knoxville, (Dated: October 29, 2008).
  10. Joshi, C. M. and Prajapat, M. L. , 1975, The operator , and a generalization of certain classical polynomials, Kyungpook Math. J. , 15, 191-199.
  11. Mittal, H. B. , 1971, A generalization of Laguerre polynomial, Publ. Math. Debrecen, 18, 53-58.
  12. Mittal, H. B. , 1971, Operational representations for the generalized Laguerre polynomial, Glasnik Mat. Ser III, 26(6), 45-53.
  13. Mittal, H. B. , 1977, Bilinear and Bilateral generating relations, American J. Math. , 99, 23-45.
  14. Patil, K. R. and Thakare, N. K. , 1975, Operational formulas for a function defined by a generalized Rodrigues formula-II, Sci. J. Shivaji Univ. 15, 1-10.
  15. Rainville, E. D. ,1971 Special functions, Chelsea Publishing Company, Bronx, New York.
  16. Shampine?L. F. , Robert Ketzscher? Using AD to solve BVPs in MATLAB Journal ACM Transactions on Mathematical Software, Volume 31 Issue 1, ACM New York, NY, USA, March 2005.
  17. Singh, R. P. , 1968, On generalized Truesdell polynomials, Rivista de Mathematica, 8, 345-353.
  18. Srivastava, A. N. and Singh, S. N. , 1979, Some generating relations connected with a function defined by a Generalized Rodrigues formula, Indian J. Pure Appl. Math. , 10(10), 1312-1317.
  19. Srivastava, H. M. and Singhal, J. P. , 1971, A class of polynomials defined by generalized Rodrigues formula, Ann. Mat. Pura Appl. , 90(4), 75-85.
  20. Shrivastava, P. N. , 1974, Some operational formulas and generalized generating function, The Math. Education, 8, 19-22.
  21. Shukla, A. K. and Prajapati J. C. , 2007, On some properties of a class of Polynomials suggested by Mittal, Proyecciones J. Math. , 26(2), 145-156.
  22. Stephen, M. Watt, Making Computer Algebra More Symbolic (Invited), pp. 43-49, Proc. Transgressive Computing: A conference in honor or Jean Della Dora, (TC 2006), Granada Spain, April 24-26 2006.
Index Terms

Computer Science
Information Sciences

Keywords

Special Function Generating function Bessel function of first kind Sequence of function Matlab