CFP last date
20 February 2025
Reseach Article

Personalized Web Recommendation Combining User-centered Collaborative Technique with URL Weighting

by Delwar Hossain Arif, A H M Sofi Ullah, K M Habibullah, Md Ali Al Mamun
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 63 - Number 2
Year of Publication: 2013
Authors: Delwar Hossain Arif, A H M Sofi Ullah, K M Habibullah, Md Ali Al Mamun
10.5120/10437-5116

Delwar Hossain Arif, A H M Sofi Ullah, K M Habibullah, Md Ali Al Mamun . Personalized Web Recommendation Combining User-centered Collaborative Technique with URL Weighting. International Journal of Computer Applications. 63, 2 ( February 2013), 13-18. DOI=10.5120/10437-5116

@article{ 10.5120/10437-5116,
author = { Delwar Hossain Arif, A H M Sofi Ullah, K M Habibullah, Md Ali Al Mamun },
title = { Personalized Web Recommendation Combining User-centered Collaborative Technique with URL Weighting },
journal = { International Journal of Computer Applications },
issue_date = { February 2013 },
volume = { 63 },
number = { 2 },
month = { February },
year = { 2013 },
issn = { 0975-8887 },
pages = { 13-18 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume63/number2/10437-5116/ },
doi = { 10.5120/10437-5116 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:13:06.071470+05:30
%A Delwar Hossain Arif
%A A H M Sofi Ullah
%A K M Habibullah
%A Md Ali Al Mamun
%T Personalized Web Recommendation Combining User-centered Collaborative Technique with URL Weighting
%J International Journal of Computer Applications
%@ 0975-8887
%V 63
%N 2
%P 13-18
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Web usage mining has become very popular in various business areas for learning more about the users' browsing behavior and recommending the perfect product in which the user is interested in. At present there are many systems that recommend for the users on web usage mining, but most of the systems suffer from inappropriate scalability, which would lead to very weak recommendations. In this paper we proposed a new technique that gives emphasis on page view weighting based on transaction timing and building a session pattern graph for each session. This technique provides the scope for better scalability and also provides effective number of recommendations with remarkable accuracy.

References
  1. Kim E. , Kim W. , Lee Y. (2000) "Purchase Propensity Prediction of EC customer by combining multiple classifiers based on GA". International conference on electronic Commerce (2000) (P. P 274-280)
  2. Kim J. , Lee B. , Shaw M. , Ehag H. , Nelson M. (2001) "Application of decision tree induction techniques to personalized advertisements on internet storefronts". International journal of Electronic commerce, 5(3), 45-62
  3. Schafer J. , Konstan J. A. , Reidl J. (1999) "Recommendation systems in e-commerce". ACM conference on Electronic commerce. EC -99
  4. Sneha, Y. S. , G. Mahadevan, M. Prakash (2011) "Recommendation systembased on web usage mining a ssemantic web, A survey". International journal on recent trends in engineering and technology, vol. 05, No. 01, march-2011
  5. R. Cooley. , B. Mobasher, J. Srivastava "Data preparation for mining world wide web browsing pattern".
  6. G. shani. , A. Gunavardana. (2009) "Evaluating Recommender System". Microsoft Research, MSR-TR-2009-159 NOV-2009
  7. G. Ganapathy. , K. Arunesh. (2011) "Models for recommender systems in web usage mining based on user ratings". Proceedings of the world congress on engineering 2011, Vol-1 WCE 2011, July 6-8, 2011, U. K
  8. B. Mobasher, R. Cooley, J. Srivastava (1999) "Creating adaptive websites through usage based clustering of URLs". IEEE knowledge and data engineering workshop (KDEX'99), 1999
  9. O. Nasaoui, H. Frigui, A. Joshi, R. Krishna puram (1999) "Mining web access logs using relational compatitive fuzzy clustering". Proceedings of the eight international fuzzy systems association world congress, August-1999
  10. P. S. Yu. (1999) "Dataminig and personalization techniques". International conference on database systems for advanced applications. (DASFAA99), April-1999, Taiwan.
  11. T. Yan. , M. Jcobsen, H. Garcia-molina, U. dayal. (1996) "From user access patterns to dymanic hypertest linking". 5th World Wide Web conference, Paris, France – 1996
  12. AlMurtadha, Y. M. , M. N. B. Sulaiman, N. Mustapha and N. I. Udzir (2010). "Mining web navigation profiles for recommendation system". Information Technology Journal, 9:790-796. DOI: 10. 3923/itj. 2010. 790. 796
  13. Mehrdad Jalai, Norwati Mustapha, Ali Mamat, Md. Nasir B Sulaiman. (2009) "A Recommender System for Online Personalization in WUM Applications". Proceedings of the world congress on engineering and computer science 2009 Vol-II, San fransisco, USA.
  14. B. Mobasher, R. Cooley, J. Srivastava (2000) "Automatic Personalization based on web usage mining". Commun. ACM, 43:142-151. DOI:10. 1145/345124. 345169
  15. B. Mobasher, H. Dai, T. Luo, M. Nakagawa (2002) "Discovery and Evaluation of aggregate usage profiles for web personalization". Commun. ACM, 6:61-82. DOI: 10. 1023/A:1013232803866
  16. O. R. Zaiane, M. Xin, J. Han (1998) "Discovering web access patterns and trends by applying overlapping and data mining technology on web logs". Proceedings of advances in Digital Libraries conference (ADL98), Santa Barbara, CA, April – 1998
  17. Z. Huang (2001) "A cube model for web access sessions and cluster analysis". Proceedings of the 7th ACM SIGKDD International Conference on Knowledge discovery and Data Mining, 2001
  18. J. H. Lee, W. K. Shiu (2004) "An adaptive website system to improve efficiency with web mining techniques". Advanced Engineering Informatics 18(3) (July 2004), 129-142
  19. X. Jin, Y. Zhou, B. Mobasher (2004) "Web Usage Mining Based on Probabilistic Latent Semantic Analysis". KDD'04, ACM 1-58113, 2004
  20. G. Xu, Y. Zang, X. Zhou (2005) "A Web Recommendation technique Based on Probabilistic Latent Semantic Analysis". WISE2005, LNCS3806, pp 15-28, Springer 2005
  21. B. Mehta, T. Hofmann, W. Nejdl (2007) "Robust collaborative Filtering" RecSys'07, ACM 978-1-59593-730-8/07/0010, pp 49-56, 2007
  22. JJ. Sandiv, B. Mobasher, R. Burke (2008) "A survey of collaborative Recommendation and the Robustness of Model-Based Algorithms". IEEE CCTC on DE – 2008.
  23. JJ. Sandiv, B. Mobasher, R. Burke (2007) "Robustness of Collaborative recommendation Based on Association rule Mining". ResSys'07, pp 105-112, ACM – 2007.
  24. B. Mehta, T. Hofmann, P. Fankhauser (2007) "Lies and Propaganda: Detecting Spam Users in Collaborative Filtering". IUI'07, pp 14-21, ACM – 2007
  25. B. Van Roy and X. Yan (2010) "manipulation Robustness of Collaborative Filtering". April – 2010
  26. John O'Donovan, Barry Symth (2005) "Trust in recommendation systems". IUI'05, ACM 2005 1-58113-894, 2005
  27. Paolo Buono, Maria Francesca Costabile, Stefano Guida, Antonio Piccinno, Giuseppe Tesoro. (2002) "Integrating User Data and Collaborative Filtering in a web Recommendation System". Proceedings of 18th International conference on user modeling, vol. 2266, pp: 315-321, 2002
  28. A. Kumar, P. Thambidurai (2010) "Collaborative Web Recommendation System – A Survey Approach". GJCST, vol 9, issue 5, pp. 30-35
Index Terms

Computer Science
Information Sciences

Keywords

Web usage mining URL Weighting Weighted pattern graph Recommendation score Page weight