CFP last date
20 December 2024
Reseach Article

Fixed Points of Mappings in Fuzzy Normed Spaces

by Savita Rathee, Seema Mehra, Anju Panwar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 62 - Number 21
Year of Publication: 2013
Authors: Savita Rathee, Seema Mehra, Anju Panwar
10.5120/10218-4542

Savita Rathee, Seema Mehra, Anju Panwar . Fixed Points of Mappings in Fuzzy Normed Spaces. International Journal of Computer Applications. 62, 21 ( January 2013), 8-10. DOI=10.5120/10218-4542

@article{ 10.5120/10218-4542,
author = { Savita Rathee, Seema Mehra, Anju Panwar },
title = { Fixed Points of Mappings in Fuzzy Normed Spaces },
journal = { International Journal of Computer Applications },
issue_date = { January 2013 },
volume = { 62 },
number = { 21 },
month = { January },
year = { 2013 },
issn = { 0975-8887 },
pages = { 8-10 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume62/number21/10218-4542/ },
doi = { 10.5120/10218-4542 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:12:28.428676+05:30
%A Savita Rathee
%A Seema Mehra
%A Anju Panwar
%T Fixed Points of Mappings in Fuzzy Normed Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 62
%N 21
%P 8-10
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Chugh and Rathi [3] introduced the concept of Fuzzy normed space. In this paper, a common fixed point theorem for a pair of operators in fuzzy normed spaces is established.

References
  1. Aamri, M. and Moutawakil, D. El. 2002. Some new common ?xed point theorems under strict contractive conditions, J. Math. Anal. Appl. , 270, 181-188.
  2. Bocsan, Gh. 1974. On some fixed point theorem in random normed space, Univ. din Timisoara, Seminarul de teoria functillor si matematici aplicate, a Spatii metrice probabiliste, 18.
  3. Chugh, R. and Rathi, S. 2005. Weakly compatible maps in fuzzy metric space, Universitatea Din Bacau, Studii Si Cercetari Stiintifice Seria: Matematica Nr. 15, 31-38.
  4. Erceg, M. A. 1979. Metric space in fuzzy set theory, J. Math. Anal. Appl. 69, 205-230.
  5. George, A. and Verramani, P. 1994. Some results in fuzzy metric space, Fuzzy Sets and Systems, 64, 395-399.
  6. Grabiec, M. 1983. Fixed point in fuzzy metric spaces, Fuzzy Sets and System, 27, 385-389.
  7. Kaleva, O. and Seikkala, O. 1984. On fuzzy metric spaces, Fuzzy Sets and System, 12, 215.
  8. Kramosil, J. and Michalek, J. 1975. Fuzzy metric and statistical metric spaces, Kybernetica, 11, 330-334.
  9. Manro,S. , Kumar,S. , Kumar, S. and Bhatia S. S. 2012. Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Spaces Using Common (E. A) Property and Implicit Relation, Journal of advance studies in topology. Vol 3, No 3
  10. Rana, R. , Dimri, R. C. and Tomar, A. 2010. Fixed Point Theorems in Fuzzy Metric Spaces Using Implicit Relations, International journal of Computer Application, No. 1 Article 4
  11. Schweizer, B. and Sklar, A. 1983. Probabilistic metric spaces, North Holland Series
  12. Serstnev, A. N. 1963. The notion of random normed spaces, Dokl. Akad. Nauk. USSR, 149, 280-283.
  13. Zadeh, L. 1965. Fuzzy Sets, Infor. Control. 89, 338-353.
Index Terms

Computer Science
Information Sciences

Keywords

Fixed point Fuzzy normed spaces