CFP last date
20 February 2025
Reseach Article

Data Structures in Robot Navigation Optimized by Adaptive Straightness

by Leoncio Claro Barros Neto, andre Riyuiti Hirakawa
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 62 - Number 11
Year of Publication: 2013
Authors: Leoncio Claro Barros Neto, andre Riyuiti Hirakawa
10.5120/10121-4906

Leoncio Claro Barros Neto, andre Riyuiti Hirakawa . Data Structures in Robot Navigation Optimized by Adaptive Straightness. International Journal of Computer Applications. 62, 11 ( January 2013), 1-9. DOI=10.5120/10121-4906

@article{ 10.5120/10121-4906,
author = { Leoncio Claro Barros Neto, andre Riyuiti Hirakawa },
title = { Data Structures in Robot Navigation Optimized by Adaptive Straightness },
journal = { International Journal of Computer Applications },
issue_date = { January 2013 },
volume = { 62 },
number = { 11 },
month = { January },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-9 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume62/number11/10121-4906/ },
doi = { 10.5120/10121-4906 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:11:29.147404+05:30
%A Leoncio Claro Barros Neto
%A andre Riyuiti Hirakawa
%T Data Structures in Robot Navigation Optimized by Adaptive Straightness
%J International Journal of Computer Applications
%@ 0975-8887
%V 62
%N 11
%P 1-9
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Utilizing adaptive finite automaton (AFA) such as motion automaton, we propose an alternative for the available researches on data structures in robotics navigation, in which trajectories are made up of straight line segments. Software is modeled by a set of rules as systems of state machines to cover the complete space environment of the robot. The formalism of adaptive digitized straight line segments (ADSLS) is applied for data representation, aiming to exploit its ability to express tolerances, scalability, errors and deviations in angle or in length of segments. Consequently, ADSLS is shown by simulations to be effective to represent the complexities of real world scenarios of a robot; furthermore, it is able to adapt, reacting to circumstance stimuli in a single pass, also presenting learning capability.

References
  1. Alejandra Barrera. Advances in Robot Navigation. InTech, 2011.
  2. Rudiger Befit, Dietrich Paulus, and Michael Harbeck. Segmentation of lines and arcs and its application for depth recovery. In Anais. . . , volume 4, pages 3165 –3168 vol. 4. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-97, april 1997.
  3. Partha Bhowmick and Bhargab B. Bhattacharya. Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:1590–1602, September 2007.
  4. Wolfram Burgard, Dieter Fox, Daniel Hennig, and Timo Schmidt. Estimating the absolute position of a mobile robot using position probability grids. In In Proceedings of the Thirteenth National Conference on Artificial Intelligence, Menlo Park, pages 896–901. AAAI Press/MIT Press, 1996.
  5. Yeong-Hwa Chang, Tsu-Tian Lee, and Chang-Huan Liu. On-line approximate cartesian path trajectory planning for robotic manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 22(3), may 1992.
  6. Leoncio C. de Barros Neto, André R. Hirakawa, and Antonio M. A. Massola. Adaptive modeling of digital straightness applied to geometric representation enhancement. International Journal of Computer Applications, 10(2):31– 39, November 2010. Published by Foundation of Computer Science.
  7. Leoncio C. de Barros Neto, André R. Hirakawa, and Antonio M. A. Massola. An adaptive model applied to digital geometry to enhance segment straightness. IEEE Latin America Transactions, 9:956 – 962, Oct. 2011.
  8. Leoncio Claro de Barros Neto. Modelagem em geometria digital aprimorada por técnicas adaptativas de segmentos de retas. PhD thesis, Escola Politécnica da Universidade de São Paulo (USP), Junho 2011.
  9. H. Freeman. Boundary encoding and processing. Picture Processing and Psychopictorics, pages 241–266, 1970. B. S. Lipkin and A. Rosenfeld, editors, New York, Academic Press, 1970.
  10. Bartolomé Garau, Alberto Alvarez, and Gabriel Oliver. Path planning of autonomous underwater vehicles in current fields with complex spatial variability: an A* approach. In ICRA, pages 194–198. IEEE, 2005.
  11. Feng Han and Song Chun Zhu. Bottom-up/top-down image parsing with attribute grammar. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1):59–73, January 2009.
  12. S. H. Y. Hung. On the straightness of digital arcs. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-7(2):203–215, March 1985.
  13. Reinhard Klette and Azriel Rosenfeld. Digital geometry: geometric methods for digital picture analysis. Morgan Kaufmann, 2004.
  14. Benjamin Kuipers and Yung-Tai Byun. A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems, 8:47–63, 1991.
  15. H. R. Lewis and C. H. Papadimitriou. Elements of the theory of computation. Prentice-Hall, 1981.
  16. Shu Xiang Li and Murray H. Loew. Analysis and modeling of digitized straight-line segments. In Anais. . . , pages 294–296, Rome, Italy, 1988. Proceedings of International Conference on Pattern Recognition, Publ by IEEE, Piscataway, NJ.
  17. Peter F. M. Nacken. Metric for line segments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(12):1312–1318, December 1993.
  18. Alex Nash, Kenny Daniel, Sven Koenig, and Ariel Felner. Theta*: Any-angle path planning on grids. In National Conference on Artificial Intelligence, pages 1177–1183, 2007.
  19. J. J. Neto. Um levantamento da evolução da adaptatividade e da tecnologia adaptativa. Revista IEEE América Latina, 5(7):496–505, Novembro. 2007.
  20. J. J. Neto. Adaptatividade: generalização conceitual. In Anais. . . , Escola Politécnica da Universidade de São Paulo, 2009. 3o Workshop de Tecnologia Adaptativa (WTA).
  21. J. P. Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique. PhD thesis, Université Louis Pasteur, Strasbourg, 1991.
  22. Azriel Rosenfeld. Digital straight line segments. IEEE Transactions on Computers, C-23(12):1264–1269, December 1974.
  23. N. Sariff and N. Buniyamin. An overview of autonomous mobile robot path planning algorithms. In Anais. . . 4th Student Conference on Research and Development, June 2006.
  24. Bernt Schiele and James L. Crowley. Comparison of position estimation techniques using occupancy grids. In In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pages 1628–1634, 1994.
  25. J. Sellen. Direction weighted shortest path planning. In Anais. . . , volume 2, pages 1970 –1975 vol. 2. IEEE International Conference on Robotics and Automation, may 1995.
  26. M. A. A Sousa, A. R. Hirakawa, and J. J. Neto. Adaptive automata for mapping unknown environments by mobile robots. In Anais. . . Ibero-American Conference on Artificial Intelligence, Lecture Notes in Artificial Intelligence: Advances in Artificial Intelligence, p. 562-571, 2004.
  27. Sebastian Thrun and Arno Bü. Integrating grid-based and topological maps for mobile robot navigation. In Proceedings of the Thirteenth National Conference on Aartificial Intelligence - Volume 2, AAAI'96, pages 944–950. AAAI Press, 1996.
  28. Kamil Tulum, Umut Durak, and Kemal Ider. Situation aware uav mission route planning. In IEEE Aerospace conference, editor, IEEE Aerospace Conference, March 2009.
  29. Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, and Peter Wolstenhoime. Modeling Software with Finite State Machines: a Practical Approach. Auerbach Publications, 2006.
  30. Kai Ching You and King Sun Fu. A syntactic approach to shape recognition using attributed grammars. IEEE transactions os systems, man, and cybernetics, 9(6):334–345, June 1979.
Index Terms

Computer Science
Information Sciences

Keywords

Digital Geometry Robotics Pattern Recognition Automata Error Recovery