CFP last date
20 January 2025
Reseach Article

Software based Automated Early Detection of Diabetic Retinopathy on Non Dilated Retinal Image through Mathematical Morphological Process

by N. S. Datta, R. Sarker, H. S. Dutta, M. De
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 60 - Number 18
Year of Publication: 2012
Authors: N. S. Datta, R. Sarker, H. S. Dutta, M. De
10.5120/9793-4395

N. S. Datta, R. Sarker, H. S. Dutta, M. De . Software based Automated Early Detection of Diabetic Retinopathy on Non Dilated Retinal Image through Mathematical Morphological Process. International Journal of Computer Applications. 60, 18 ( December 2012), 20-24. DOI=10.5120/9793-4395

@article{ 10.5120/9793-4395,
author = { N. S. Datta, R. Sarker, H. S. Dutta, M. De },
title = { Software based Automated Early Detection of Diabetic Retinopathy on Non Dilated Retinal Image through Mathematical Morphological Process },
journal = { International Journal of Computer Applications },
issue_date = { December 2012 },
volume = { 60 },
number = { 18 },
month = { December },
year = { 2012 },
issn = { 0975-8887 },
pages = { 20-24 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume60/number18/9793-4395/ },
doi = { 10.5120/9793-4395 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:07:49.684475+05:30
%A N. S. Datta
%A R. Sarker
%A H. S. Dutta
%A M. De
%T Software based Automated Early Detection of Diabetic Retinopathy on Non Dilated Retinal Image through Mathematical Morphological Process
%J International Journal of Computer Applications
%@ 0975-8887
%V 60
%N 18
%P 20-24
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Microaneurysms (MAs) are the earliest clinical sign of Diabetic Retinopathy. MA detection at early stage can help to reduce the blindness. In this paper software based method is presented for early detection of diabetic retinopathy using non dilated retinal images. Here, initially an automated system is generated to identify diabetic affected eye among the several input retinal images. Graphical presentation of MA count for different images can easily classify the normal eye and the diabetic affected eye. Then the performance analysis of the above system is carried out graphically using the affected eye. The average sensitivity, specificity, precision and accuracy are the important performance analysis parameters and measured as 81. 68%, 99. 98%, 83. 00% & 99. 97% respectively for ten diabetic affected retinal images.

References
  1. Wild S. , Roglic G. , Green A. , Sicree R. , King H. ,"Global prevalence of diabetes: estimates for the year 2000 and projections for2030", Diabetes Care 2004; 27:1047–53.
  2. Iqbal M. I. , Aibinu A. M. , Gubbal N. S. , Khan A. , "Automatic DiagnosisofRetinopathy using fundus Images''- Master's Thesis (2006), Blekinge Institute of Technology.
  3. Jelinek H. J. , Cree M. J. , Worsley D. , "Luckie A. , and Nixon P. , "An automated microaneurysm detector as a tool for identification of diabetic retinopathy in rural optometric practice". Clinical and Experimental Optometry, 89(5):299–305, September 2006.
  4. Massin P. , Erginay A. , and Gaudric A. "Retinopathie Diabetique", Elsevier, Editions scientifiques of medicales, Elsevier, SAS, Paris 2000.
  5. Wareham N. J. ," Cost-effectiveness of alternative methods for diabetic retinopathy screening [letter]". Diabetes Care, 16:844 (1993).
  6. Javitt J. C. Canner J. K. , Sommer A. , "Cost effectiveness of current approaches to the control of retinopathy in type I diabetics". Ophthalmology, 96:255-264 (1989).
  7. Jelinek H. J. , Cree M. J. , Worsley D. , Luckie A. , and Nixon P. "An automated microaneurysm detector as a tool for identification of diabetic retinopathy in rural optometric practice". Clinical and Experimental Optometry, 89(5):299–305, September 2006.
  8. Spencer T. ,Olson J. A. ,MCHardy et al "An image processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus, "comp Biomed Res 29,1996,pp. 284-302.
  9. Hipwell J. H. , Strachan F. , Olson J. A. et al. , "Automated detection of microaneurysms in digital red-free photographs: a diabetic retinopathy screening tool," Diabetic Medicine 17, 2000, pp. 588–594.
  10. Fleming D. , Philip S. , Goatman K. A. , Olson J. A. "Automated microaneurysm detection using local contrast normalization and local vessel detection". IEEE Transactions on Medical Imaging, 5(9):1223–1232, September2006.
  11. Sinthanayothin C. , Boyce J. F. , Williamson T. H. , T. , "Automated Detection of Diabetic Retinopathy on Digital FundusImage," Diabetic Medicine 19(2), 2002, pp. 105–112, 2002.
  12. Usher D. , Dumskyj M. , Himaga M. et al. , "Automated Detection of Diabetic Retinopathy in Digital Retinal Images: A Tool for Diabetic Retinopathy Screening," Diabetic Medicine 21(1), 2004, pp. 84–90.
  13. Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital Image Processing using MATLAB" ISBN 81-297-0515-X, second Indian reprint, 2005.
  14. Mead A. , Burnett S. , Davey C. , "Diabetic Retinopathy screen in the UK", Journal of the Royal Society of medicine, volume94March2001
Index Terms

Computer Science
Information Sciences

Keywords

Microaneurysms (MAs) Diabetic Retinopathy (DR) Contrast Limited Adaptive Histogram Equalization (CLAHE) Exudates