CFP last date
20 January 2025
Reseach Article

Design of a Low-loss Y-Splitter for Optical Telecommunication using a 2D Photonics Crystal

by Md. Mahfuzur Rahman, Mamun Hasan, Saeed Mahmud Ullah
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 60 - Number 14
Year of Publication: 2012
Authors: Md. Mahfuzur Rahman, Mamun Hasan, Saeed Mahmud Ullah
10.5120/9763-3613

Md. Mahfuzur Rahman, Mamun Hasan, Saeed Mahmud Ullah . Design of a Low-loss Y-Splitter for Optical Telecommunication using a 2D Photonics Crystal. International Journal of Computer Applications. 60, 14 ( December 2012), 34-39. DOI=10.5120/9763-3613

@article{ 10.5120/9763-3613,
author = { Md. Mahfuzur Rahman, Mamun Hasan, Saeed Mahmud Ullah },
title = { Design of a Low-loss Y-Splitter for Optical Telecommunication using a 2D Photonics Crystal },
journal = { International Journal of Computer Applications },
issue_date = { December 2012 },
volume = { 60 },
number = { 14 },
month = { December },
year = { 2012 },
issn = { 0975-8887 },
pages = { 34-39 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume60/number14/9763-3613/ },
doi = { 10.5120/9763-3613 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:06:48.513976+05:30
%A Md. Mahfuzur Rahman
%A Mamun Hasan
%A Saeed Mahmud Ullah
%T Design of a Low-loss Y-Splitter for Optical Telecommunication using a 2D Photonics Crystal
%J International Journal of Computer Applications
%@ 0975-8887
%V 60
%N 14
%P 34-39
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this study a wide bend, low loss (>2. 0dB) Y-splitter has been designed for TE-polarized light. The structure consists of hexagonal lattice where circular Si-dielectric rods in air background have been organized. For optimal design of photonic band gap, inter-cell distance and cell radius have been varied to find the largest photonic band gap which should corresponds to the optical communication wavelength ranging from 1. 3µm to 1. 6µm. From the study, cell radius of 0. 3µm and lattice constant of 0. 98µm were the optimum values which provided the wavelength range of 1. 34µm to 1. 58 µm. Using this structure, waveguide properties have been studied varying the cell radius of the adjacent cell of the propagating path. With the optimized waveguide deign, a Y-splitter has been designed. Less than 2dB loss has been realized for wavelength ranging from 1. 38µm to 1. 56µm using the designed Y-splitter. And a minimum loss of 0. 46 dB has been realized at wavelength 1. 56µm. By using plane wave expansion (PWE) method band gap of the structure have been evaluated. Finite difference time domain (FDTD) method has also been used to compute the transmission power, electric field distribution and magnetic field distribution properties of the system.

References
  1. C. R. Simovski, S. He, Microw. Opt. Technol. Lett. 31(2001) 214.
  2. F. -R. Yang, K. -P. Ma, Y. Qian, T. Itoh, IEEE Trans. Microw. Theor. 47(1997) 1509.
  3. Z. Wang, C. T. Chan, W. Zhang, N. Ming, P. Sheng, Phys. Rev. B 64 (2001) 113108.
  4. E. Yablonovitch, "Applied Physics – How to be truly photonic," Science, 289, 557-559, 2000.
  5. S. Noda and T. Baba (eds), Roadmap on Photonic Crystals, Kluwer Academic Publishers, Springer, 2003.
  6. K. M. Ho, C. T. Chan, and C. M. Soukoulis, " Existance of a photonic gap in periodic dielectric structures," Phys. Rev. Lett, 65,3152-3155, 1990.
  7. S. Noda, N. Yamamoto, and A. Sasaki, "New realization method for three-dimensional photonic crystal in optical wavelength region," Jpn. J. Appl. Phys. , 35,L909-L912, 1996.
  8. See for example, C. Yeh, Applied Photonics (Academic, New York, 1990), Chap. 11.
  9. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, Science 282, 274 (1998).
  10. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, Opt. Lett. 25, 1297 (2000).
  11. E. Chow, S. Y. Lin, S. G. Johnson, and J. D. Joannopoulos, Opt. Lett. 26, 286 (2001).
  12. A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, Appl. Phys. Lett. 80, 547 (2002).
  13. P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, IEEE Proc. Optoelectron. 145, 384 (1998).
  14. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
  15. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
  16. A. Klekamp, P. Kersten, and W. Rehm, J. Lightwave Technol. 14, 2684 (1996).
  17. H. Hatami-Hanza, M. J. Lederer, P. L. Chu, and I. M. Skinner, J. Lightwave Technol. 12, 208 (1994).
  18. T. Sondegaard and K. H. Dridi, Phys. Rev. B 61, 15,688 (2000).
  19. R. Wilson, T. J. Karle, I. Moerman, and T. F. Krauss, "Efficient photonic crystal Yjunctions," J. Opt. A:Pure Appl. Opt. vol. 5, pp S76, 2003.
  20. M. Koshiba, Y. Tsuji, and M. Hikari, "Time-domain beam propagation method and its application to photonic crystal circuits," J. Lightwave Technol. vol. 18,pp102,2000.
  21. A. Mekis, JC. Chen, I. Kurland, S. Fan, PR. Villeneuve, and JD. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys Rev. Lett. vol. 77,pp3787,1996.
  22. S. John, "Strong localization of photons in certain disordered dielectric super lattices," Phys. Rev. Lett. vol. 58, pp 2286, 1987.
  23. L. H. Frandsen, P. I. Borel and Y. X. Zhuang, A. Harpøth, M. Thorhauge, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets , V. Wiaux, J. Wouters, and S. Beckx, " Ultralow-loss 3-dB photonic crystal waveguide splitter," Opt. Lett. , vol. 29, pp. 1623- 1625, 2004.
  24. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. vol. 58, pp 2059, 1987.
  25. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, " Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. vol. 37, pp 293, 2001.
  26. M. Koshiba, Y. Tsuji, and M. Hikari, "Time-domain beam propagation method and its application to photonic crystal circuits," J. Lightwave Technol. vol. 18,pp102,2000.
  27. A. Chutinan and S. Noda, "Waveguides and waveguides bends in two-dimensional photonic crystal slabs," Phys. Rev. B. vol. 62, pp 4488, 2000.
Index Terms

Computer Science
Information Sciences

Keywords

Plane Wave Expansion(PWE) Plane Wave Expansion Method(PWEM) Finite Difference Time Domain(FDTD) Photonic Carystals(PhCs) Photonic Band gap(PBG) Transverse Electric(TE) Transverse Magnetic(TM) Line Defect Waveguide(LDW)