CFP last date
20 January 2025
Reseach Article

Entanglement Computation in Atoms and Molecules

by Stefano Siccardi, Rita Pizzi, Giuliano Benenti
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 60 - Number 1
Year of Publication: 2012
Authors: Stefano Siccardi, Rita Pizzi, Giuliano Benenti
10.5120/9660-4081

Stefano Siccardi, Rita Pizzi, Giuliano Benenti . Entanglement Computation in Atoms and Molecules. International Journal of Computer Applications. 60, 1 ( December 2012), 43-48. DOI=10.5120/9660-4081

@article{ 10.5120/9660-4081,
author = { Stefano Siccardi, Rita Pizzi, Giuliano Benenti },
title = { Entanglement Computation in Atoms and Molecules },
journal = { International Journal of Computer Applications },
issue_date = { December 2012 },
volume = { 60 },
number = { 1 },
month = { December },
year = { 2012 },
issn = { 0975-8887 },
pages = { 43-48 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume60/number1/9660-4081/ },
doi = { 10.5120/9660-4081 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:05:32.319153+05:30
%A Stefano Siccardi
%A Rita Pizzi
%A Giuliano Benenti
%T Entanglement Computation in Atoms and Molecules
%J International Journal of Computer Applications
%@ 0975-8887
%V 60
%N 1
%P 43-48
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, a method for computing entanglement of electrons in atoms and molecules is described. The importance of entanglement computation for Quantum Computers and for Biology is highlighted and the existing models' pros and cons are illustrated. A description of the algorithms follows, with some considerations about the execution times and how they scale increasing the system's Hilbert space dimension.

References
  1. G. E. Moore (1965); Cramming more components onto integrated circuits Electronics, 38, N. 8
  2. F. L. Carter (1987); Molecular electronic devices, Dekker Inc.
  3. G. Benenti, G. Casati, G. Strini (2007); Principles of quantum computation and information, vol. I-II, World Scientific
  4. G. Benenti, G. Strini (2007); A bird's eye view of quantum computers arXiv:quant-ph/0703105, Quantum Biosystems 1, 21
  5. I. Buluta, S. Ashhab, F. Nori (2011); Natural and artificial atoms for quantum computation Reports on Progress in Physics, 74, p. 104401
  6. G. S. Engel, T. R. Calhoun, E. L. Read1 T-K. Ahn, T. Manal, Y-C. Cheng, R. E. Blankenship, G. R. Fleming (2007); Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems Nature, 446, p. 782
  7. M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik (2008); Environment-assisted quantum walks in photosynthetic energy transfer Journal of Chemical Physics, 129, p. 174106
  8. M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Whaley (2010); Quantum entanglement in photosynthetic light harvesting complexes Nature Physics, 6, 462 (2010).
  9. T. Scholak, F. de Melo, T. Wellens, F. Mintert1, A. Buchleitner (2011); Efficient and coherent excitation transfer across disordered molecular networks Physical Review E, 83, p. 021912
  10. M. Weissbluth (1978), Atoms and molecules, Academic Press
  11. J. D. Graybeal (1993); Molecular spectroscopy, McGraw-Hill
  12. G. Benenti, S. Siccardi, G. Strini (2012); Entanglement in Helium arXiv:quant-ph/1204. 6667
  13. R. Blatt, D. Wineland (2008); Entangled states of trapped atomic ions Nature, 453, p. 1008
  14. I. Bloch (2008); Quantum coherence and entanglement with ultracold atoms in optical lattices Nature, 453, p. 1016
  15. M. Saffman, T. G. Walker, K. Molmer (2010); Quantum information with Rydberg atoms Reviews of Modern Physics 82, p. 2313
  16. A. Micheli, G. K. Brennen, P. Zoller (2006); A toolbox for latticespin models with polar molecules Nature Physics 2, p. 341
  17. K. B. Whaley, M. Sarovar, A Ishizaki (2011); Quantum entanglement phenomena in photosynthetic light harvesting complexes, Procedia Chemistry, 3, p. 152
  18. C. Amovilli, N. H. March (2003); Exact density matrix for a two-electron model atom and approximate proposals for realistic two-electron systems Phisical Review A, 67, p. 22509
  19. C. Amovilli, N. H. March (2004); Quantum information: Jaynes and Shannon entropies in a two-electron entangled artificial atom Physical Review A, 69, p. 54302
  20. M. Moshinsky (1968) How good is the Hartree-Fock approximation? The American Journal of Physics, 36, p. 52
  21. A. Nagy (2006); Fisher information in a two-electron entangled artificial atom Chemical Physics Letters, 425, p. 154
  22. N. H. March, A. Cabo, F. Claro, G. G. N. Angilella (2008) Proposed definitions of the correlation energy density from a Hartree-Fock starting point: the two-electron Moshinsky model atom as an exactly solvable model Physical Review A, 77, p. 042504 (2008)
  23. R. J. Yanez, A. R. Plastino, J. S. Dehesa (2010) Quantum entanglement in a soluble two-electron model atom European Physics Journal D, 56, p. 14
  24. O. Osenda, P. Serra (2007) Scaling of the von Neumann entropy in a two-electron system near the ionization threshold Physical Review A, 75, p. 042331
  25. O. Osenda, P. Serra (2008) Excited state entanglement on a two-electron system near the ionization threshold Journal of Physics B, 41, p. 065502
  26. J. S. Dehesa, T. Koga, R. J. Yanez, A. R. Plastino, and R. O. Esquivel (2012); Quantum entanglement in helium Journal of Physics B 45, p. 015504
  27. R. Daudel, G. Leroy, D. Peters, M. Sana, (1983) Quantum Chemistry, Wiley
  28. Y. Saad (2011); Numerical methods for large eigenvalue problems SIAM Philadelphia 2011.
Index Terms

Computer Science
Information Sciences

Keywords

Quantum entanglement computation algorithms