CFP last date
20 February 2025
Reseach Article

An Annealed Genetic Algorithm for Multi Mode Resource Constrained Project Scheduling Problem

by Vijay S Bilolikar, Karuna Jain, Mahesha R Sharma
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 60 - Number 1
Year of Publication: 2012
Authors: Vijay S Bilolikar, Karuna Jain, Mahesha R Sharma
10.5120/9659-4080

Vijay S Bilolikar, Karuna Jain, Mahesha R Sharma . An Annealed Genetic Algorithm for Multi Mode Resource Constrained Project Scheduling Problem. International Journal of Computer Applications. 60, 1 ( December 2012), 36-42. DOI=10.5120/9659-4080

@article{ 10.5120/9659-4080,
author = { Vijay S Bilolikar, Karuna Jain, Mahesha R Sharma },
title = { An Annealed Genetic Algorithm for Multi Mode Resource Constrained Project Scheduling Problem },
journal = { International Journal of Computer Applications },
issue_date = { December 2012 },
volume = { 60 },
number = { 1 },
month = { December },
year = { 2012 },
issn = { 0975-8887 },
pages = { 36-42 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume60/number1/9659-4080/ },
doi = { 10.5120/9659-4080 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:05:31.664361+05:30
%A Vijay S Bilolikar
%A Karuna Jain
%A Mahesha R Sharma
%T An Annealed Genetic Algorithm for Multi Mode Resource Constrained Project Scheduling Problem
%J International Journal of Computer Applications
%@ 0975-8887
%V 60
%N 1
%P 36-42
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents a genetic algorithm (SA) for the classical multimode resource-constrained project scheduling problem (MRCPSP). The objective is makespan minimization of the project. A new precedence feasible multi point forward backward crossover operator is presented. SA and GA are used in tandem to ensure balance in exploration and exploitation of search space. SA is employed as local search procedure, due to its stochastic neighborhood selection strategy to escape local optima hence a good exploitation strategy; and GA as exploration strategy due to its large number of population. Computational investigations are carried out on standard data set problems from PSPLIB and it is proved that hybridization of GA with SA gives competitive performance when compared with currently available algorithms

References
  1. Talbot, F. B. , 1982. Resource-constrained project scheduling with time-resource trade-offs: the nonpreemptive case. Management Science 28 (10), 1197–1210
  2. Patterson, J. H. , S?owin´ ski, R. , Talbot, F. B. , We?glarz, J. , 1989. An algorithm for a general class of precedence and resource constrained scheduling problems. In: S?owin´ ski, R. , Weglarz, J. (Eds. ), Advances in Project Scheduling. Elsevier, Amsterdam, pp. 3–28.
  3. Sprecher, A. , 1994. Resource-constrained project scheduling: exact methods for the multi-mode case. Springer, Berlin.
  4. Sprecher, A. , Hartmann, S. , Drexl, A. , 1997. An exact algorithm for project scheduling with multiple modes. OR Spektrum 19 (3), 195–203.
  5. Hartmann, S. , Drexl, A. , 1998. Project scheduling with multiple modes: a comparison of exact algorithms. Networks 32 (4), 283–297.
  6. Heilmann, R. , 2003. A branch-and-bound procedure for the multi-mode resource constrained project scheduling problem with minimum and maximum time lags. European Journal of Operational Research 144 (2), 348–365.
  7. Zhu, G. , Bard, J. F. , Yu, G. , 2006. A branch-and-cut procedure for the multi-mode resource-constrained project scheduling problem. INFORMS Journal on Computing 18 (3), 377–390
  8. Józefowska, J. , Mika, M. , Rozycki, R. , Waligóra, G. , We?glarz, J. , 2001. Simulated annealing for multi-mode resource-constrained project scheduling. Annals of Operations Research 102 (1–4), 137–155.
  9. Bouleimen, K. , Lecocq, H. , 2003. A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operational Research 149 (2), 268–281.
  10. Mika, M. , Waligóra, G. , We?glarz, J. , 2008. Tabu search for multi-mode resource constrained project scheduling with schedule-dependent setup times. European Journal of Operational Research 187 (3), 1238–1250.
  11. Mori, M. , Tseng, C. C. , 1997. A genetic algorithm for multi-mode resource constrained project scheduling problem. European Journal of Operational Research 100 (1), 134–141.
  12. Özdamar, L. , 1999. A genetic algorithm approach to a general category project scheduling problem. IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews 29 (1), 44–59.
  13. Hartmann, S. , 2001. Project scheduling with multiple modes: a genetic algorithm. Annals of Operations Research 102 (1–4), 111–135.
  14. Alcaraz, J. , Maroto, C. , Ruiz, R. , 2003. Solving the multi-mode resource-constrained project scheduling problem with genetic algorithms. Journal of the Operational Research Society 54 (6), 614–626.
  15. Buddhakulsomsiri, J. , Kim, D. S. , 2006. Properties of multi-mode resource constrained project scheduling problems with resource vacations and activity splitting. European Journal of Operational Research 175 (1), 279–295.
  16. Ranjbar, M. , De Reyck, B. , Kianfar, F. , 2009. A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling. European Journal of Operational Research 193 (1), 35–48.
  17. Tseng, L. Y. , Chen, S. C. , 2009. Two-phase genetic local search algorithm for the multimode resource-constrained project scheduling problem. IEEE Transactions on Evolutionary Computation 13 (4), 848–857.
  18. Lova, A. , Tormos, P. , Cervantes, M. , Barber, F. , 2009. An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. International Journal of Production Economics 117 (2), 302–316.
  19. Van Peteghem, V. , Vanhoucke, M. , 2010. A genetic algorithm for the preemptive and nonpreemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research 201 (2), 409–418.
  20. Zhang, H. , Tam, C. M. , Li, H. , 2006. Multi-mode project scheduling based on particle swarm optimization. Computer-Aided Civil and Infrastructure Engineering 21 (2), 93–103
  21. Jarboui, B. , Damak, N. , Siarry, P. , Rebai, A. , 2008. A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation 195 (1), 299–308.
  22. Chiang, C. W. , Huang, Y. Q. , Wang, W. Y. , 2008. Ant colony optimization with parameter adaptation for multi-mode resource-constrained project scheduling. Journal of Intelligent and Fuzzy Systems 29 (4–5), 345–358.
  23. Metropolis, N. , Rosenbluth, A. W. , Rosenbluth, M. N. , Teller, A. H. , Teller, E. 1953. Equation of State Calculation by Fast Computing Machines. J. of Chem. Phys. , 21, 1087-1091.
  24. Kirkpatrick, S , Gelatt, C. D. , Vecchi, M. P. 1983. Optimization by Simulated Annealing. Science, vol 220, No. 4598, pp671-680
  25. Kolisch, R. , Sprecher, A. , 1997. PSPLIB – A project scheduling problem library. European Journal of Operational Research 96 (1), 205–216.
  26. D. Sundar, B. Umadevi, K. Alagarasamy, "Multi Objective Genetic Algorithm for optimized Resources usage and the Prioritization of the Constraints in the Software Project Planning", International Journal of Computer Applications, vol. 3, 2010, 0975-8887.
Index Terms

Computer Science
Information Sciences

Keywords

Resource constraints multi point forward backward crossover