CFP last date
20 January 2025
Reseach Article

The SOM Robustness Capacity for Phonemes Recognition in Adverse Environment

by Mohamed Salah Salhi, Najet Arous, Noureddine Ellouze
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 60 - Number 1
Year of Publication: 2012
Authors: Mohamed Salah Salhi, Najet Arous, Noureddine Ellouze
10.5120/9656-4076

Mohamed Salah Salhi, Najet Arous, Noureddine Ellouze . The SOM Robustness Capacity for Phonemes Recognition in Adverse Environment. International Journal of Computer Applications. 60, 1 ( December 2012), 12-20. DOI=10.5120/9656-4076

@article{ 10.5120/9656-4076,
author = { Mohamed Salah Salhi, Najet Arous, Noureddine Ellouze },
title = { The SOM Robustness Capacity for Phonemes Recognition in Adverse Environment },
journal = { International Journal of Computer Applications },
issue_date = { December 2012 },
volume = { 60 },
number = { 1 },
month = { December },
year = { 2012 },
issn = { 0975-8887 },
pages = { 12-20 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume60/number1/9656-4076/ },
doi = { 10.5120/9656-4076 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:05:29.671491+05:30
%A Mohamed Salah Salhi
%A Najet Arous
%A Noureddine Ellouze
%T The SOM Robustness Capacity for Phonemes Recognition in Adverse Environment
%J International Journal of Computer Applications
%@ 0975-8887
%V 60
%N 1
%P 12-20
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we describe the formatting guidelines for IJCA Journal Submission. The SOM, for kohonen Self Organizing Map, has proven to be a classifier of high caliber in the field of speech recognition signals breasts. Thus, several versions and enhancements were applied on this tool such as recurrent SOM 'RSOM', the growing recurrent SOM 'GRSOM' and the growing hierarchical SOM GHSOM, to consider the integration of sound variability. This paper aims to detect the ability of the SOM robustness in terms of phonemes recognition for continuous speech in a noisy environment. This idea represents, in fact, the real case for speech recognition.

References
  1. Teuvo Kohonen,:' Self-organizing maps' , Helsinki university of technology november 16, 2000.
  2. M. Berouti, R. Schwartz et J. Makhool : 'Enhancement of Speech Corrpted by acoustic Noise', Proceedings of the IEEE, pp 208-211, 1979.
  3. R. Boite, H Bourlard, T. Dutoit, J. Hancq et H. Leich : 'Traitement de la parole', Collection technique et Scientifique des Télécommunications, 1999.
  4. S. F Boll, : 'Suppression of Acoustic Noise in Speech Using Spectral subtraction', IEEE Transactions on Acoustics Speech and Signal Processing, Vol 27, pp 113-120, April 1979.
  5. A. Bron : ' wavelet-based denoising of speech", Master Thesis, Technion Israel Institute of Technology, Haifa, 2000.
  6. B. Burke : ' Onde et ondelette la saga d'un outil mathématique', editions, Hubbard, 1996.
  7. R. R. Coifman et M. V. Wickerhauser : 'Entropy based Algorithm for best basis selection', IEEE transactions on Information theory, 1992.
  8. D. L. Donoho : "De-noising by Soft Thresholding", IEEE Transactions on Information Theory, vol 41, n°3, May 1995.
  9. Y. Ephraïm and D. Malah : "Speech enhancement using a minimum meansquare error short-time spectral amplitude estimator", IEEE Trans. on Acoustics,Speech and Signal Processing, vol 32, n° 6,pp 1109-1121, Dec 1984.
  10. Y. Ephraïm and D. Malah : "Speech enhancement using a minimum meansquare error log-spectral amplitude estimator", IEEE Trans. on Acoustics, Speech and Signal Processing, vol. 33, n°2, pp. 443–445, Apr 1985.
  11. G. Ju, L. Lee : 'Speech enhancement and improved recognition accuracy by integrating wavelet transform and spectral subtraction algorithm', 8th European Conference on Speech Communication and Technology, Eurospeech2003.
  12. J. S. Lim et A. V Oppenheim : 'Enhancement and bandwidth compression of noisy speech', Proceedings of the IEEE, pp 1586-1604, 1979.
  13. S. Mallat : 'Une exploration des signaux en ondelettes', Editions de l'Ecole Polytechnique, 2000.
  14. T. F. Quatieri : 'Discrete time speech processing : Practice and Application', Prentice Hall, New Jersey, 2002.
  15. Stephan Bloehdorn and Sebastian Blohm: "A Self Organizing Map for Relation Extraction from Wikipedia using Structured Data Representations", Institute AIFB, University of Karlsruhe D-76128 Karlsruhe, Germany, 2006.
  16. F. Truchetet : 'Ondelettes pour le signal numérique'. Collection Traitement du Signal, Edition Hermes, 1998.
  17. S. V. Vaseghi:'Advanced Signal Processing and Noise Reduction', John Whiley & Sons edition, 1996.
  18. N. Whitmal, J . C. Rutledge et J. Cohen: ''Reducing correlated noise in digital hearing aids'', IEEE Eng. Med. Biol. Magazine, vol15, pp. 88-96, 1996.
  19. S. Chang, Y. Kwon, S. I. Yang and I. J. Kim : 'Speech Enhancement for non stationary noise Environment by adaptive Wavelet Packet', Proc. International Conference on Signal and Speech Processing, Vol 1, pp 561-564, 2002.
  20. M. S. Salhi and N. Ellouze : 'An Adaptative Thresholding SOM-Wavelet Packet Model to Improve the Phonemic Recognition Rate', Setit 2012_IEEE proceeding.
Index Terms

Computer Science
Information Sciences

Keywords

Noisy environment phonemes recognition Self organizing map SOM SOM robustness