CFP last date
20 February 2025
Reseach Article

Cooperating swarms: A paradigm for collective intelligence and its application in finance

by Sumona Mukhopadhyay, Santo Banerjee
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 6 - Number 10
Year of Publication: 2010
Authors: Sumona Mukhopadhyay, Santo Banerjee
10.5120/1107-1450

Sumona Mukhopadhyay, Santo Banerjee . Cooperating swarms: A paradigm for collective intelligence and its application in finance. International Journal of Computer Applications. 6, 10 ( September 2010), 31-41. DOI=10.5120/1107-1450

@article{ 10.5120/1107-1450,
author = { Sumona Mukhopadhyay, Santo Banerjee },
title = { Cooperating swarms: A paradigm for collective intelligence and its application in finance },
journal = { International Journal of Computer Applications },
issue_date = { September 2010 },
volume = { 6 },
number = { 10 },
month = { September },
year = { 2010 },
issn = { 0975-8887 },
pages = { 31-41 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume6/number10/1107-1450/ },
doi = { 10.5120/1107-1450 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T19:55:05.329471+05:30
%A Sumona Mukhopadhyay
%A Santo Banerjee
%T Cooperating swarms: A paradigm for collective intelligence and its application in finance
%J International Journal of Computer Applications
%@ 0975-8887
%V 6
%N 10
%P 31-41
%D 2010
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The control of nonlinear chaotic system and the estimation of parameters is a vital issue in nonlinear science. Studies on parameter estimation for chaotic systems have been investigated recently. A variant of Particle Swarm Optimization (PSO) known as Chaotic Multi Swarm Particle Swarm Optimization (CMS-PSO) is proposed which is inspired from the metaphor of ecological co-habitation of species. The generic PSO is modified with the chaotic sequences for multi-dimension parameter estimation and optimization by forming multiple cooperating swarms. Results demonstrate the effectiveness of the scheme in successfully estimating the unknown parameters of a new hyperchaotic finance system. Numerical results and comparison demonstrate that for the given parameters of the nonlinear system, CMS-PSO can identify the optimized parameters effectively to reach the pareto optimal solution and convergence speed.

References
  1. de Castro L.N., Timmis, J. (2002). Artificial Immune Systems: A New Computational Intelligence Approach. Springer. ISBN 1852335947, 9781852335946: 57–58.
  2. Kephart , J. O.( 1994)A biologically inspired immune system for computers. Proceedings of Artificial Life IV: The Fourth International Workshop on the Synthesis and Simulation of Living Systems. MIT Press: 130–139.
  3. Haykin S. (1999). Neural Networks: A Comprehensive Foundation, Prentice Hall, ISBN 0-13-273350-1.
  4. Zadeh LA.( 1965). Fuzzy sets , Information and Control 8 (3) : 338–353.
  5. Abraham A. (2005) Evolutionary Computation, In: Handbook for Measurement, Systems Design, Peter Sydenham and Richard Thorn (Eds.). John Wiley and Sons Ltd. London. ISBN 0-470-02143-8: 920-931.
  6. Rechenberg, I. (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Stuttgart: Fromman-Holzboog;.
  7. Schwefel, H.P.( 1977). Numerische Optimierung von Computermodellen mittels der Evolutionsstrategie, Basel: Birkhaeuser.
  8. Fogel, L.J., Owens, A.J. and Walsh, M.J. (1966) Artificial Intelligence Through Simulated Evolution. John Wiley and Sons Inc. USA
  9. Holland, J.H. (1975). Adaptation in natural and artificial systems. The University of Michigan Press Ann Arbor.
  10. Koza, J.R. (1992). Genetic Programming : On the Programming of computers by Means of natural selection : The MIT Press Cambridge MA
  11. Kennedy, J. and Eberthart, R.C. (1995) Particle swarm optimization. Proc IEEE Int Conf on Neural Networks, Piscataway:1942–1948.
  12. Kennedy, J. and Eberthart, R.C. and Shi, Y. (2001) Swarm intelligence. San Francisco, CA: Morgan Kaufman.
  13. Zinkova, M(Author). (2004) School of Goldband Fusilier, Pterocaesio chrysozona. Photograph taken in Papua New Guinea.Wikimedia Commons.
  14. Yann(Author) (2010). Bee swarms. Jaura MP India.. Wikimedia Commons.
  15. Jha, S and Roy, D(Author). (10 January 2010). The Heat and Dust Project (travelogue - work in progress). Photograph taken in Jaisalmer, Rajasthan. Pub: HarperCollins India. (Rights of reproduction reserved) .
  16. Parsopoulos, K.E. and Vrahatis, M.N. (2002). Recent approaches to global optimization problems through Particle Swarm Optimization. Natural Computing 1 : 235–306.
  17. Grassberger, P. and Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D 9 :189-208.
  18. L'Ecuyer P. (1996) . Combined Multiple Recursive Random Number Generators, Operations Research 44( 5 ): 816–822.
  19. Thomaidis, N., Angelidis, T., Vassiliadis, V. and Dounias , G. (2009), Active Portfolio Management With Cardinality Constraints: An Application Of Particle Swarm Optimization, New Mathematics and Natural Computation (NMNC). World Scientific Publishing Co. Pte. Ltd. 5(03) : 535-555.
  20. Marinakis, Y., Marinaki, M., Doumpos, M. and Zopounidis, C. (2009). Ant colony and particle swarm optimization for financial classification problems, Expert Systems with Applications 36(7) : 10604-10611.
  21. Jha, G.K, Kumar, S., Prasain, H., Thulasiraman, P. and Thulasiraman, R.K. (2009). Option pricing using Particle Swarm Optimization : Proceedings of the 2nd Canadian Conference on Computer Science and Software Engineering : 267-272 .
  22. Bibby, B.M. and Sørensen, M. (1995). Martingale estimation functions for discretely observed diffusion processes, Bernoulli 1(1/2) : 017-039.
  23. He, Q., Wang, L. and Liu, B.( 2007). Parameter estimation for chaotic systems by particle swarm optimization. Chaos, Solitons and Fractals, 34 : 654–661.
  24. Tang, Y. and Guan, X. ( 2009). Parameter estimation for time-delay chaotic system by particle swarm optimization. Chaos, Solitons and Fractals, 40 : 1391–1398.
  25. Liang, J.J. and Suganthan, P.N. (2005). Dynamic multi-swarm particle swarm optimizer, Swarm Intelligence Symposium, Proceedings IEEE : 124 – 129.
  26. Sun, J., Zhao, J., Wu, X., Fang, W., Cai, Y. and Xu, W. (2010). Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method. Physics Letters A.
  27. Fan, S.K.S. and Chang, Ju-Ming. (2010). Dynamic multi-swarm particle swarm optimizer using parallel PC cluster systems for global optimization of large-scale multimodal functions, Engineering Optimization 42(5): 431 – 451.
  28. Shannon, C.E. (1949) Communication theory of secrecy systems. Bell Syst. Tech. J 28: 656-715.
  29. Caponetto, R., Fortuna, L., Fazzino, S. and Xibilia, M.G. (2003). Chaotic sequences to improve the performance of evolutionary algorithms, IEEE Transactions on Evolutionary Computation; Vol 7 (3) : 289-304.
  30. Coelho, L.D.S. and Mariani, V.C. (2008). Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Systems with Applications 34:1905–1913.
  31. Shi, Y. and Eberthart, R.C.(1998). A modified particle swarm optimizer. Proc IEEE Int Conf on Evolutionary Computation, Anchorage :69–73.
  32. Li YX, Tang WKS, Chen G. Generating Hyperchaos via State Feedback Control. Int. J. Bifurcat. Chao.2005; 15(10) : 3367-3375.
  33. Ma, J.H. and Chen, Y.S.(2001). Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I). Appl. Math. Mech 22: 1240-1251 . (Englished.)
  34. Ma, J.H. and Chen, Y.S.(2001). Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (II). Appl. Math. Mech. 22: 1375-1382 (Englished.).
  35. Ma, J.H. and Chen, Y.S. (2004). Impulsive control of chaotic Attractors in Nonlinear Chaotic systems. Appl.Math. Mech.; 25:889-894.
Index Terms

Computer Science
Information Sciences

Keywords

Computational intelligence particle swarm optimization Finance system chaos multi-objective global optimization