CFP last date
20 December 2024
Reseach Article

Software Effort Estimation by Genetic Algorithm Tuned Parameters of Modified Constructive Cost Model for NASA Software Projects

by Brajesh Kumar Singh, A. K. Misra
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 59 - Number 9
Year of Publication: 2012
Authors: Brajesh Kumar Singh, A. K. Misra
10.5120/9577-4053

Brajesh Kumar Singh, A. K. Misra . Software Effort Estimation by Genetic Algorithm Tuned Parameters of Modified Constructive Cost Model for NASA Software Projects. International Journal of Computer Applications. 59, 9 ( December 2012), 22-26. DOI=10.5120/9577-4053

@article{ 10.5120/9577-4053,
author = { Brajesh Kumar Singh, A. K. Misra },
title = { Software Effort Estimation by Genetic Algorithm Tuned Parameters of Modified Constructive Cost Model for NASA Software Projects },
journal = { International Journal of Computer Applications },
issue_date = { December 2012 },
volume = { 59 },
number = { 9 },
month = { December },
year = { 2012 },
issn = { 0975-8887 },
pages = { 22-26 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume59/number9/9577-4053/ },
doi = { 10.5120/9577-4053 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:03:44.585177+05:30
%A Brajesh Kumar Singh
%A A. K. Misra
%T Software Effort Estimation by Genetic Algorithm Tuned Parameters of Modified Constructive Cost Model for NASA Software Projects
%J International Journal of Computer Applications
%@ 0975-8887
%V 59
%N 9
%P 22-26
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Software estimation accuracy is one of the most difficult tasks for software developers. Defining the project estimated cost, duration and maintenance effort early in the development life cycle is greatest challenge to be achieved for software projects. Formal effort estimation models, like Constructive Cost Model (COCOMO) are limited by their inability to manage uncertainties and impression in software projects early in the project development cycle. A software effort estimation model which adopts a binary genetic algorithm technique provides a solution to adjust the uncertain and vague properties of software effort drivers. In this paper, COCOMO is used as algorithmic model and an attempt is being made to validate the soundness of genetic algorithm technique using NASA project data. The main objective of this research is to investigate the effect of crisp inputs and genetic algorithm technique on the accuracy of system's output when a modified version of the famous COCOMO model applied to the NASA dataset. Proposed model validated by using 5 out of 18 NASA project dataset. Empirical results show that modified COCOMO for software effort estimates resulted in slightly better as compared with results obtained in [30]. The proposed model successfully improves the performance of the estimated effort with respect to the Variance Account For (VAF) criteria, MMRE and Pred.

References
  1. Parvinder S. Sandhu, Porush Bassi, and Amanpreet Singh Brar, Software Effort Estimation Using Soft Computing Techniques, World Academy of Science, Engineering and Technology pp 46 2008.
  2. Bailey, J. W. and V. R. Basili, 1981. A meta model for software development resource expenditure. Proc. Intl. Conf. Software Engineering, pp: 107-115.
  3. Boraso, M. , C. Montangero and H. Sedehi, 1996. Software cost estimation: An experimental study of model performances. Tech-nical Report TR-96-22, Departimento Di Informatatica, Uni-versita Di Pisa, Italy.
  4. B. Boehm, Software Cost Estimation with COCOMO II, Prentice Hall PTR, Upper Saddle River, New Jersey, 2000.
  5. B. W. Boehm,Software engineering economics, Englewood Cliffs, NJ: Prentice-Hall, 1981.
  6. C. E. Walston, C. P. Felix, A method of programming measurement and estimation, IBM Systems Journal, vol. 16, no. 1, pp. 54 73, 1977.
  7. G. N. Parkinson, Parkinson's Law and Other Studies in Administration, Houghton-Miffin, Boston, 1957.
  8. L. H. Putnam, A general empirical solution to the macro software sizing and estimating problem, IEEE Trans. Soft. Eng. , pp. 345-361, July 1978.
  9. J. R. Herd, J. N. Postak, W. E. Russell, K. R. Steward, Software cost estimation study: Study results, Final Technical Report, RADCTR77- 220, vol. I, Doty Associates, Inc. , Rockville, MD, pp. 1-10, 1977.
  10. R. E. Park, PRICE S, The calculation within and why, Proc. of ISPA Tenth Annual Conference, Brighton, England, pp. 231-240, July 1988.
  11. R. K. D. Black, R. P. Curnow, R. Katz, M. D. Gray, BCS Software Production Data, Final Technical Report, RADC-TR-77-116, Boeing Computer Services, Inc. , March, pp. 5-8, 1977.
  12. R. Tausworthe, Deep Space Network Software Cost Estimation Model, Jet Propulsion Laboratory Publication 81-7, pp. 67-78, 1981
  13. W. S. Donelson, Project Planning and Control, Proc. Datamation, pp. 73- 80, June 1976.
  14. Boehm, B. , 1995. Cost Models for Future Software Life Cycle Process: COCOMO2 Annals of Software Engineering.
  15. Kemere, C. F. , 1987. An empirical validation of software cost estimation models. Communication ACM, 30: 416-429.
  16. Boehm B. , C. Abts and S. Chulani, 2000. Software development cost estimation approaches-A survey. Ann. Software Eng. , 10: 177-205. DOI: 10. 1023/A: 1018991717352.
  17. Boehm, B. , 1995. Cost models for future software life cycle processes: COCOMO 2. 0. Ann. Software Eng. 1: 45 60.
  18. Putnam, L. H. , 1978. A general empirical solution to the macro software sizing and estimating problem. IEEE Trans. Software Eng. , 4: 345-361. http://portal. acm. org/citation. cfm?id=1313641.
  19. Dolado. C. J. and M. Leey, 2001. Can genetic programming improve software effort estimation? Comparative evaluation. Inform. Software Technol. , 43: 863-873.
  20. Sheta. A. and K. DeJong, 1996. Parameter estimation of nonlinear systems in noisy environment using genetic algorithms. Proc. IEEE Intl. Symp. Intelligent Control (ISIC'96), pp: 360-366.
  21. Holland, J. , 1975. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press.
  22. Goldberg, D. , 1989. Genetic Algorithms in Search, Optimization and Machine Learning. New York, Addison-Wesley.
  23. De Jong, K. A. , 1975. Analysis of Behavior of a Class of Genetic Adaptive Systems. Ph. D. Thesis. University of Michigan, Ann Arbor, MI.
  24. De Jong, K. , 1992. Are genetic algorithms function optimizers? Proc. Sec. Parallel Problem Solving From Nature Conference, pp:3-14. The Netherlands: Elsevier Science Press.
  25. Back, T. and H. P. Schwefel, 1993. An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1, pp: 1-
  26. Kristinsson. K. and G. Dumont, 1992. System identification and control using genetic algorithms. IEEE Transaction on Systems, Man and Cybernetics, 22: 1022-1046.
  27. Fonseca, C. , E. Mendes, Fleming and S. A. Billings,1993. Nonlinear model term selection with genetic algorithms. Proc. IEE/IEEE Workshop on Natural Algorithms in Signal Process. , pp: 27/1 –27/8.
  28. Schultz. A. and J. Grefenstette, 1994. Evolvingrobot behavior. Proc. Artificial Life Conf. MIT Press.
  29. Chipperfield, A. J. and P. J. Fleming, 1996. Genetic algorithms in control systems engineering. IASTED J. Computers and Control, 24: 1.
  30. Sheta, A. F. , Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects, Journal of Computer Science 2 (2): 118-123, 2006
  31. Burgess, C. J. and M. Lefley, 2001, Can genetic programming improve software effort estimation? A comparative evaluation. Inform. Software Technol. , 43: 863-873. DOI: 10. 1016/S0950-5849(01)00192-6.
Index Terms

Computer Science
Information Sciences

Keywords

COCOMO Effort estimation algorithmic model Variance Account For MMRE Pred