CFP last date
20 January 2025
Reseach Article

Generalized Coupled Fibonacci Sequences

by G. P. S. Rathore, Shweta Jain, Omprakash Sikhwal
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 59 - Number 8
Year of Publication: 2012
Authors: G. P. S. Rathore, Shweta Jain, Omprakash Sikhwal
10.5120/9567-4037

G. P. S. Rathore, Shweta Jain, Omprakash Sikhwal . Generalized Coupled Fibonacci Sequences. International Journal of Computer Applications. 59, 8 ( December 2012), 12-15. DOI=10.5120/9567-4037

@article{ 10.5120/9567-4037,
author = { G. P. S. Rathore, Shweta Jain, Omprakash Sikhwal },
title = { Generalized Coupled Fibonacci Sequences },
journal = { International Journal of Computer Applications },
issue_date = { December 2012 },
volume = { 59 },
number = { 8 },
month = { December },
year = { 2012 },
issn = { 0975-8887 },
pages = { 12-15 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume59/number8/9567-4037/ },
doi = { 10.5120/9567-4037 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:04:10.768840+05:30
%A G. P. S. Rathore
%A Shweta Jain
%A Omprakash Sikhwal
%T Generalized Coupled Fibonacci Sequences
%J International Journal of Computer Applications
%@ 0975-8887
%V 59
%N 8
%P 12-15
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the recent years, there has been much interest in development of knowledge in the general region of Fibonacci numbers and related mathematical topics. The concept of coupled Fibonacci sequences was first introduced by Atanassov, K. T. in 1985. Generalized coupled Fibonacci sequences are defined by with initial conditions In this paper, identities of generalized coupled Fibonacci sequences are presented.

References
  1. Atanassov K. T. , 1986. On a Second New Generalization Of the Fibonacci Sequence, The Fibonacci Quarterly, Vol. 24, No. 4, 362-365.
  2. Atanassov K. T. , 1995. Remark on a New Direction for a Generalization of the Fibonacci Sequence, The Fibonacci Quarterly, Vol. 33, No. 3, 249-250.
  3. Atanassov K. T. , Atanassov L. C. and Sasselov D. D. , 1985. A New Perspective to the Generalization of the Fibonacci sequence, The Fibonacci Quarterly, Vol. 23, No. 1, 21-28.
  4. Atanassov K T. , Atanassov V. , Shannon A. and Turner J. , 2002. New Visual perspective On Fibonacci number, World Scientific Publishing Company, Singapore.
  5. Hordam, A. F. , 1965. Basic properties of certain Generalized sequence of numbers, The Fibonacci Quarterly, 3, 161-176.
  6. Hordam, A. F. , 1961. The generalized Fibonacci Sequences, the American Math. Monthly, Vol. 68, No. 5 455-459.
  7. Lee J. Z. and Lee J. S. , 1987. Some Properties of the Generalization of the Fibonacci sequence, The Fibonacci Quarterly, Vol. 25, No. 2, 111-117.
  8. Rathore G. P. S. , Jain. S. , Sikhwal O. , 2012. Multiplicative Coupled Fibonacci Sequences of third order, Int. J. Contemp. Math. Sciences, Vol. 7, No. 31, 1535 – 1540.
  9. Singh M. , Sikhwal O. and Jain S. , 2010. Coupled Fibonacci Sequences of Fifth Order and Some Properties International Journal of Mathematical Analysis, Vol. 4, No. 25, 1247-1254, Bulgaria.
  10. Singh B. and Sikhwal O. , 2010. Multiplicative coupled Fibonacci sequences and some fundamental properties, International journals contemporary mathematical Sciences, Vol. 5, No. 5, 223-230.
  11. Singh B. and Sikhwal O. , Fibonacci-triple sequences and Some fundamental properties, Tamkang Journal ofMathematics, Vol. 41, No. 4 (2010), 325-333.
  12. Singh, M. , Bhatnagar, S. , Sikhwal, O. , 2011, Multiplicative Triple Fibonacci sequences, Applied Mathematical Sciences, Vol. 6, No. 52, 2567 – 2572
  13. Sikhwal O. , 2012 Generalization of Fibonacci sequence: An Intriguing Sequence, Lap Lambert Academic Publishing GmbH & Co. KG, Germany.
Index Terms

Computer Science
Information Sciences

Keywords

Fibonacci sequence 2-Fibonacci sequence generalized coupled Fibonacci sequences