CFP last date
20 January 2025
Reseach Article

New Separation Axiom on Ω^-closed sets.

by M. Lellis Thivagar, M. Anbuchelvi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 59 - Number 3
Year of Publication: 2012
Authors: M. Lellis Thivagar, M. Anbuchelvi
10.5120/9525-3936

M. Lellis Thivagar, M. Anbuchelvi . New Separation Axiom on Ω^-closed sets.. International Journal of Computer Applications. 59, 3 ( December 2012), 1-5. DOI=10.5120/9525-3936

@article{ 10.5120/9525-3936,
author = { M. Lellis Thivagar, M. Anbuchelvi },
title = { New Separation Axiom on Ω^-closed sets. },
journal = { International Journal of Computer Applications },
issue_date = { December 2012 },
volume = { 59 },
number = { 3 },
month = { December },
year = { 2012 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume59/number3/9525-3936/ },
doi = { 10.5120/9525-3936 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:05:06.721201+05:30
%A M. Lellis Thivagar
%A M. Anbuchelvi
%T New Separation Axiom on Ω^-closed sets.
%J International Journal of Computer Applications
%@ 0975-8887
%V 59
%N 3
%P 1-5
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we introduce and investigate a new separation axiom associated with Ω^-closed sets and characterize it by using Ω^-closure operator,Ω^-kernel Ω^-derived set and Ω^-shell of singletons. Also we find some of their applications.

References
  1. Lellis Thivagar M, Anbuchelvi M,"Note on ^ -closed sets in topological spaces",Mathematical Theory and Modeling, Vol. 2 No. 9 (2012),50-58.
  2. Levin N. (1970),"Generalised closed sets in topology" Rend. Circ. Mat. Palermo 19(2). 89-96.
  3. Levin N, "Semi open stets and semi continuity in topological spaces",Amer. math. monthly 1963,70,36-41. ,
  4. Sundaram. P and M. Sheik John,"Weakly closed sets and weak continuous maps in topological spaces", Proc. 82nd Indian Sci. Cong,(1995),49.
  5. Velico. N. V,"H-closed topological spaces", Amer. math. soc. Trans,1968,78,103-18.
Index Terms

Computer Science
Information Sciences

Keywords

Ω ^ -closed sets Ω ^ -closure Ker Ω ^ (fxg) Ω ^ -derived set Ω ^ - shell