CFP last date
20 January 2025
Reseach Article

Content based Image Retrieval based on the integration of Color Histogram, Color Moment and Gabor Texture

by S. Mangijao Singh, K. Hemachandran
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 59 - Number 17
Year of Publication: 2012
Authors: S. Mangijao Singh, K. Hemachandran
10.5120/9639-4325

S. Mangijao Singh, K. Hemachandran . Content based Image Retrieval based on the integration of Color Histogram, Color Moment and Gabor Texture. International Journal of Computer Applications. 59, 17 ( December 2012), 13-22. DOI=10.5120/9639-4325

@article{ 10.5120/9639-4325,
author = { S. Mangijao Singh, K. Hemachandran },
title = { Content based Image Retrieval based on the integration of Color Histogram, Color Moment and Gabor Texture },
journal = { International Journal of Computer Applications },
issue_date = { December 2012 },
volume = { 59 },
number = { 17 },
month = { December },
year = { 2012 },
issn = { 0975-8887 },
pages = { 13-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume59/number17/9639-4325/ },
doi = { 10.5120/9639-4325 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:04:26.731051+05:30
%A S. Mangijao Singh
%A K. Hemachandran
%T Content based Image Retrieval based on the integration of Color Histogram, Color Moment and Gabor Texture
%J International Journal of Computer Applications
%@ 0975-8887
%V 59
%N 17
%P 13-22
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Content-Based Image Retrieval (CBIR) systems help users to retrieve relevant images based on their contents such as color and texture. In this paper, a new approach is proposed in which color histogram, color moment and Gabor texture descriptors are integrated. The color histogram has the advantages of rotation and translation invariance. The HSV (16, 4, 4) quantization scheme has been adopted for color histogram and an image is represented by a vector of 256-dimension. The color histogram has the disadvantages of lack of spatial information and to improve the discriminating power of color indexing techniques, a minimal amount of spatial information is encoded in the color index by dividing the image horizontally into three equal non-overlapping regions and extracts the three moments (mean, variance and skewness) from each region, for all the color channels. Thus, for a HSV color space, 27 floating point numbers per image are used for indexing. As its texture feature, Gabor texture descriptors are adopted. Weights are assigned to each feature respectively and calculate the similarity with combined features of color histogram, color moment and Gabor texture using Histogram intersection distance and Canberra distance as similarity measures. Experimental results show that the proposed method has higher retrieval accuracy in terms of precision than other conventional methods combining color histogram, color moment and Gabor texture based on global features approach.

References
  1. Xinjung, Z. 2006. "Research of Image retrieval based on color features", Liaoning technical University, 9(2), pp. 42-50.
  2. Datta, R. , Joshi, D. , Li, J. , Wang, J. Z. 2008. "Image retrieval: ideas, influences, and trends of the new age ", ACM Computing Surveys 40(2), pp 1-60.
  3. Gudivada, V. N. and Raghavan, V. V. 1995. "Content based image retrieval systems", IEEE Computer, Vol 28, No. 9, pp. 18-22.
  4. Manjunath, B. S. and Ma, W. Y. 1996. "Texture Features for browsing and retrieval of image data", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 8, pp. 837-842.
  5. Rui, Y. , Huang, T. S. , Ortega, M. and Mehrotra, S. 1998. " Relevance feedback : a power tool for interactive content based image retrieval ",IEEE Circuits and Systems for Video Technology , Vol. 8, No. 5, pp. 644-655.
  6. Swets, D. and Weng, J. 1999. "Hierarchical discriminant analysis for image retrieval", IEEE "PAMI, Vol. 21, No. 5, pp. 386-400.
  7. Zhang, H. and Zhong, D. 1995. "A scheme for visual feature based image retrieval", Proc. SPIE storage and retrieval for image and video databases.
  8. Yu-guang, Ye. 2007. "Research of image Retrieval based on fusing with multi-character", Hua Qiao University, pp. 14-16.
  9. Smeulders, A. M. , Worring, M. , Santini, S. , Gupta, A. and Jain, R. . 2000. "Content-based image retrieval at the end of the early years", IEEE Trans Pattern Anal Machine Intell 22: pp. 1349-1380.
  10. Choras, R. 2003. "Content-based image retrieval using color, texture, and shape information", In. Sanfeliu, Riuz-Shulcloper J. (eds) Progress in pattern recognition, speech and image analysis. Springer, Heidelberg.
  11. Corners, R. and Harlow, C. 1980. "A theoretical comparison of texture algorithms", IEEE Trans Pattern Anal Machine Intell 2: pp. 204-222.
  12. Howarth, P. and Ruger, S. "Evaluation of texture features for content based image retrieval", In: Enser P. et al. (eds) Image and video retrieval. Springer LNCS 3115:pp. 326-334.
  13. Swain, M. Z. and Ballard, D. H. 1992. "Color Indexing", Intl. J. of Computer Vision 7(1): pp. 11-32.
  14. Gonzalez, R. C. and Woods, R. C. 1992. Digital Image Processing, Addison-Weslel, Reading, MA.
  15. Mehtre, B. M. , Kankanhalli, M. S. , Narasimhalu, A. D. and Man, G. Ch. 1995. "Color matching for image retrieval", PRL, 16, pp. 325-331.
  16. Stricker, M. and Orengo, M. 1995. " Similarity of color images", In SPIE Conference on Storage and Retrieval for Image and Video Databases , volume 2420, pp. 381-392, San Jose, USA.
  17. Ogle, V. E. and Stonebraker, M. 1995. "Chabot: Retrieval from a relational database of images", Computer, pp. 40-48.
  18. Rui Y. and Huang, Th. S. 1999. "Image Retrieval: Current Techniques, Promising Directions and open Issues", JVCIR, vol. 10, pp. 39-62.
  19. Eakins, J. P. and Graham, M. E. " Content-based Image Retrieval: A report to the JISC Technology Applications Program" http://www. unn. ac. uk/iidr/research/cbir/report. html
  20. Tamura, H. , Mori, S. , Yamawaki, T. 1976. "Texture features corresponding to visual perception", IEEE Trans. On Systems, Man and Cybernetics. 6(4): 460-473
  21. Niblack, W. et. al. 1993. "The QBIC Project: Querying Images by Content Using Color, Texture and Shape". Proc. Of the Conference Storage and Retrieval for Image and Video Databases, SPIE vol. 1908, pp. 173-187.
  22. Liu, F. and Picard, R. W. 1996. "Periodicity, directionality and randomness: Wold features for image modelling and retrieval", IEEE Transactions on Pattern Analysis and Machine Intelligence 18(7): 722-733.
  23. Kaplan, L. M. et al. 1998. "Fast texture database retrieval using extended fractal features" in Storage and Retrieval for Image and Video Databases VI(I. K. Sethi and R. C. Jain eds), Proc. SPIE 3312, 162-173.
  24. Smith, J. R. 1997. "Integrated Spatial and Feature Image System: Retrieval, Analysis and Compression", Ph. D. thesis, Columbia University.
  25. Deng, Y. 1999. "A Region Representation for Image and Video Retrieval", Ph. D. thesis, University of California, Santa Barbara.
  26. Ma, W. Y. 1997. "Netra: A Toolbox for Navigation Large Image Databases", Ph. D. thesis, University of California, Santa Barbara.
  27. Jeanin (ed. ), S. 2000 "ISO/IEC JTCI/SC29/WG11/N3321: MPEG-7 Visual Part eXperimentation Model Version 5. 0", Nordwijkerhout.
  28. Dimai, A. 1999. "Rotation Invariant Texture Description using General Moment Invariants and Gabor Filters", In Proc. Of the 11th Scandinavian Conf. on Image Analysis. Vol I, pp. 391-398.
  29. Shih, J. L. and Chen, L. H. 2002. "Color image retrieval based on primitives of color moments", IEEE Proceedings online no. 20020614.
  30. Choras, R. S. , Andrysiak, T. and Choras, M. 2007. "Integrated color, texture and shape information for content-based image retrieval", Pattern Anal Applic. 10: 333-343.
  31. Xue, B. and Wanjun, L. 2009. "Research of Image Retrieval Based on Color", IEEE International Forum on Computer Science-Technology and Applications.
  32. Huang, Z. C. , Chan, P. P. K. , Ng, W. W. Y. , Yeung, D. S. 2010. "Content-based image retrieval using color moment and Gabor texture feature", in Poceedings of the IEEE Ninth International Conference on Machine Learning and Cybernetics, Qingdao, pp. 719-724.
  33. Kumar, D. K. , Sree, E. V. , Suneera, K. , Kumar, P. V. Ch. 2011. "Cotent Based Image Retrieval – Extraction by objects of user interest", International Journal of Computer Science and Engineering (IJCSE), Vol. 3, No. 3. , pp. 1068-1074.
  34. Saikrishna, T. V. , Yesubabu, A. , Anandrao, A. and Rani, T. S. 2012. "A Novel Image Retrieval Method using Segmentation and Color Moments", ACIJ, Advanced Computing:An International Journal, Vol. 3,No. 1, pp. 75-80.
  35. Dubey, R. S. , Choubey, R. , Bhattacharga, J. 2010. "Multi Feature Content Based Image Retrieval", (IJCSE) International Journal on Computer Science and Engineering, vol. 02, No. 06, pp. 2145-2149.
  36. Maheshwari, M. , Silakari, S. and Motwani, M. 2009. "Image Clustering using Color and Texture", Computational Intelligence, Communication Systems and Networks, pp. 403-408.
  37. Buch, P. P. , Vaghasia, M. V. and Machchchar, S. M. 2011. "Comparative analysis of content based image retrieval using both color and texture", Engineering(NUiCONE), Nirma University Internatonal Conference, pp. 1-4.
  38. Smith, J. 2002. " Color for Image Retrieval", Image Databases: Search and Retrieval of Digital Imagery, John Wiley & Sons, New York, pp. 285-311.
  39. Hafner, J. and Sawhney, H. S. 1995. "Efficient color histogram indexing for quadratic form distance functions", IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(7), pp. 729-736.
  40. J. Zhang, G. Li, S. He, "Texture-Based Image Retrieval by Edge Detection Matching GLCM", The 10th IEEE International Conference on High Performance Computing and Communications.
  41. Clause , D. A. , Jerni, M. Ed. , Gan, 2000. "Designing Gabor filters for optional texture separability", Pattern Rcognition, 33, pp. 1835-1849.
  42. Zhang, D. , Wong, A. , Indrawan, M. , Lu, G. 2003. "Content- based Image Retrieval Using Gabor Texture Features", available online, Australia.
Index Terms

Computer Science
Information Sciences

Keywords

CBIR color feature color histogram color moment Gabor texture Canberra distance