CFP last date
20 January 2025
Reseach Article

Statistical Descriptors for Fingerprint Matching

by Ravinder Kumar, Pravin Chandra, M. Hanmandlu
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 59 - Number 16
Year of Publication: 2012
Authors: Ravinder Kumar, Pravin Chandra, M. Hanmandlu
10.5120/9633-4361

Ravinder Kumar, Pravin Chandra, M. Hanmandlu . Statistical Descriptors for Fingerprint Matching. International Journal of Computer Applications. 59, 16 ( December 2012), 24-27. DOI=10.5120/9633-4361

@article{ 10.5120/9633-4361,
author = { Ravinder Kumar, Pravin Chandra, M. Hanmandlu },
title = { Statistical Descriptors for Fingerprint Matching },
journal = { International Journal of Computer Applications },
issue_date = { December 2012 },
volume = { 59 },
number = { 16 },
month = { December },
year = { 2012 },
issn = { 0975-8887 },
pages = { 24-27 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume59/number16/9633-4361/ },
doi = { 10.5120/9633-4361 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:04:23.304487+05:30
%A Ravinder Kumar
%A Pravin Chandra
%A M. Hanmandlu
%T Statistical Descriptors for Fingerprint Matching
%J International Journal of Computer Applications
%@ 0975-8887
%V 59
%N 16
%P 24-27
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents a novel algorithm for fingerprint matching using statistical descriptors. This fingerprint-matching algorithm overcomes the problems faced during matching of low quality fingerprint images. The steps of the algorithm include extraction of core point using Poincare index method, extraction of Region of Interest (ROI) around core point, and similarity evaluation of statistical descriptors using k-NN classifier. Statistical descriptors are computed from 16 Gray Level Co-occurrence Matrices (GLCM) from Extracted ROI. The proposed algorithm is evaluated on the FVC2002 DB2 database. The experimental results show the effectiveness of proposed algorithm. Computational efficiency is improved by considering the ROI of size 101 ? 101 around the core point.

References
  1. Jain, A. K. , Ross, A. , Prabhakar, S. : An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology 14(3), 4–20 (2004)
  2. Wayman, J. L. : Fundamentals of biometric authentication technologies. Int. J. Image Graphics 1(1), 93–113 (2001)
  3. A. K. Jain, L. Hong, S. Pankanti, R. Bolle, An identity—authentication system using ?ngerprints, Proc. IEEE 85 (9) (1997) 1365–1388.
  4. J. Liu, Z. Huang, K. Chan, Direct minutiae extraction from gray-level ?ngerprint image by relationship examination, in: International Conference on Image Processing, vol. 2, 2000, pp. 427–430.
  5. Maltoni, D. , Maio, D. , Jain, A. K. , Prabhakar, S. : Handbook of Fingerprint Recognition. Springer (June 2009)
  6. Ling Hong, Yifei Wan, and Anil Jain, "Fingerprint Image Enhancement: Algorithm and Performance Evaluation", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, August 1998.
  7. A. K. Jain, S. Prabhakar, L. Hong, S. Pankanti, Filterbank-based ?ngerprint matching, IEEE Trans. Image Process. 9 (5) (2000) 846–859.
  8. Sha L. F. Zhao F. Tang X. O. : Improved fingercode for filterbank-based fingerprint matching, International Conference on Image Processing Vol. 2, 2003, pp. 895-898.
  9. Arivazhagan, S. , AruIFiora, T. G. , Ganesan, L. : Fingerprint Verification using Gabor Cooccurrence Features. In: International Conference on Computational Intelligence and Multimedia Applications, pp. 281–285 (2007).
  10. Yazdi, M. , Gheysari, K. : A New Approach for the Fingerprint Classification Based on Gray-Level Co-Occurrence Matrix. International Journal of Computer and Information Science and Engineering (2008)
  11. Jain, A. K. , Prabhakar, S. , Pankanti, S. : Filterbank – based fingerprint matching. IEEE Transactions on Image Processing 9, 846–859 (2000)
  12. Ravichandran, G. , Casasent, D. : Advanced in-plane rotation-invariant correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(4), 415–420 (1994)
  13. Kumar, R. , Chandra, P. , Hanmandlu, and M. : Fingerprint Matching Based on Orientation Feature. Advanced Materials Research Journal 403-408, 888–894 (2011), doi:10. 4028/www. scientific. net/AMR. 403-408. 888.
  14. Haralick, R. M. , Shanmugam, K. , Dinstein, I. H. : Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics 3, 610–621 (1973)
  15. Aggarwal, G. , Ratha, N. K. , Jea, T. -Y. , Bolle, R. M. : Gradient based textural characterization of fingerprints. In: Proceedings of IEEE International Conference on Biometrics: Theory, Applications and Systems (September-October 2008)
  16. D Maio, D Maltoni, R Cappelli, J. L. Wayman, and A. K. Jain, FVC2000: Fingerprint Verification Competition, IEEE Trans. Pattern Analysis Machine Intelligence, 24(3), 402-412 (2002).
  17. Yang J. C. , Park D. S. : A fingerprint verification algorithm using tessellated invariant moment features, Neurocomputing 71 (2008) 1939 – 1946.
  18. R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classi?cation, second ed. , Wiley, 2000.
  19. Ross A. Jain A. K. Reisman J, A hybrid fingerprint matcher, Pattern Recognition 36(7) (2003) 1661-1673.
  20. Jin A. T. B. , Ling D. N. C. , Song O. T. , An efficient ?ngerprint veri?cation system using integrated wavelet and Fourier-Mellin invariant transform, Image Vis. Comput. 22 (6) (2004) 503–513.
  21. T. Amornraksa, S. Tachaphetpiboon, Fingerprint recognition using DCT features, Electron. Lett. 42 (9) (2006) 522–523.
Index Terms

Computer Science
Information Sciences

Keywords

Fingerprint Identification Statistical Descriptor Genuine Acceptance Rate False Acceptance Rate Feature Extraction