We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Fuzzy Model Identification: A Firefly Optimization Approach

by Shakti Kumar, Parvinder Kaur, Amarpartap Singh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 58 - Number 6
Year of Publication: 2012
Authors: Shakti Kumar, Parvinder Kaur, Amarpartap Singh
10.5120/9283-3475

Shakti Kumar, Parvinder Kaur, Amarpartap Singh . Fuzzy Model Identification: A Firefly Optimization Approach. International Journal of Computer Applications. 58, 6 ( November 2012), 1-8. DOI=10.5120/9283-3475

@article{ 10.5120/9283-3475,
author = { Shakti Kumar, Parvinder Kaur, Amarpartap Singh },
title = { Fuzzy Model Identification: A Firefly Optimization Approach },
journal = { International Journal of Computer Applications },
issue_date = { November 2012 },
volume = { 58 },
number = { 6 },
month = { November },
year = { 2012 },
issn = { 0975-8887 },
pages = { 1-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume58/number6/9283-3475/ },
doi = { 10.5120/9283-3475 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:01:43.444459+05:30
%A Shakti Kumar
%A Parvinder Kaur
%A Amarpartap Singh
%T Fuzzy Model Identification: A Firefly Optimization Approach
%J International Journal of Computer Applications
%@ 0975-8887
%V 58
%N 6
%P 1-8
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Nature-inspired methodologies are currently among the most powerful algorithms for optimization problems. This paper presents a recent nature-inspired algorithm named Firefly algorithm (FA) for automatically evolving a fuzzy model from numerical data. FA is a meta-heuristic inspired by the flashing behavior of fireflies. The rate and the rhythmic flash, and the amount of time form part of the signal system to attract other fireflies. The paper discusses fuzzy modeling for zero-order Takagi-Sugeno-Kang (TSK) type fuzzy systems. Simulations on two well known problems, one battery charger that is a fuzzy control problem and another Iris data classification problem are conducted to verify the performance of above approach. The results indicate that the FA is a very promising optimizing algorithm for evolving fuzzy logic based Systems as compared to some of the existing approaches.

References
  1. Zadeh, L. A. 1965. Fuzzy Sets, Information and Control vol. 8, 338-353.
  2. Yen, J. and Langari, R. 1999. Fuzzy Logic Intelligence, Control and Information. Prentice Hall, New Jersey.
  3. Wang, L. X. and Mendel, J. M. 1992. Generating Fuzzy rules from examples. IEEE transactions on Systems, Man and Cybernetics, vol. 22, no. 6 (Nov/Dec 1992), 1414-1427.
  4. Takagi, T. and Sugeno, M. 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 116-132.
  5. Sugeno, M. and Kang, G. T. 1988. Structure identification of fuzzy model. Fuzzy Sets and Systems, 15-33.
  6. Abe, S. and Lan, M. S. 1995. Fuzzy rule extraction directly from numerical data for function approximation. IEEE transactions on Systems, Man and Cybernetics, vol. 25, no. 1 (Jan 1995), 119-129.
  7. Juang, C. F. 2005. Combination of Online clustering and Q-value based GA for reinforcement fuzzy system design. IEEE transactions on Fuzzy Systems, vol. 13, no. 3 (June 2005), 289-302.
  8. He, Z. , Wei, C. , Yang, L. , Gao, X. , Yao S. , Eberhart, R. C. and Shi, Y. 1998. Extracting rules from fuzzy neural network by particle swarm optimization. In Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA.
  9. Homaifar, A. and Mc. Cormick, E. 1995. Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Transactions on Fuzzy Systems, vol. 3, no. 2, 129-139.
  10. Lee, M. A. and Takagi, H. 1993. Integrating design stages of fuzzy systems using genetic algorithms. In Proceedings of Second IEEE International Conference on Fuzzy Systems, 612-617.
  11. Khosla, A. , Kumar, S. , Aggarwal, K. K. and Singh, J. 2005. Particle swarm optimizer for building fuzzy models. In Proceeding of one week workshop on applied soft computing SOCO-2005, Haryana Engg. College, Jagadhri, India (July 2005), 43-71.
  12. Mahfouf, M. , Jamei, M. and Linkens, D. A. 2001. Rule-Base generation via symbiotic evolution for a mamdani-type fuzzy control system. IEEE International Fuzzy Systems Conference, 396-399.
  13. Denna, M. , Mauri G. and Zanaboni A. M. 1999. Learning fuzzy rules with Tabu Search-An application to control. IEEE Transactions on Fuzzy Systems, vol. 7, no. 2 (April 1999), 295-318.
  14. Zeng, X. J. and Singh, M. G. 2003. Knowledge bounded least squares method for the identification of fuzzy systems. IEEE Transactions on Systems, Man and Cybernetics- Part C, vol. 33, no. 1 (Feb. 2003), 24-32.
  15. Ishikawa, M. 1996. Structural learning with forgetting. Neural Networks, vol. 9, 509–521.
  16. Duch, W. , Adamczak, R. , and Grabczewski, K. 1998. Extraction of logical rules from neural networks. Neural Process. Lett. vol. 7, 211–219.
  17. Fu, L. 1991. Rule learning by searching on adapted nets. In Proceedings. of 9th National Conf. on Artificial Intelligence, 590-595.
  18. Fu, L. 1994. Rule generation from neural networks. IEEE Transactions on Systems, Man and Cybernetics, vol. 24, no. 8 (Aug. 1994), 1114-1124.
  19. Towell, G. G. and Shavlik, J. W. 1993. Extracting refined rules from knowledge-based neural networks. Machine learning, vol. 13, no. 1, 71-101.
  20. Setiono, R. 1997. Extracting rules from neural networks by pruning and hidden-unit splitting. Neural Computat, vol. 9, 205–225.
  21. Setiono, R. 2000. Extracting M of N rules from trained neural networks. IEEE Trans. Neural Networks.
  22. Setiono, R. and Liu, H. 1997. Neuro Linear: From neural networks to oblique decision rules. Neurocomputation. vol. 17, 1–24.
  23. Ishibuchi, H. et al. 1993. Neural Networks that learn from Fuzzy if then rules. IEEE Trans. on Fuzzy Systems. vol. 1, 85-97.
  24. Keller, J. , Yager, R. and Tahani, H. 1992. Neural Network implementation of fuzzy logic. Fuzzy Sets and Systems. vol. 45, 1-12.
  25. Karr , C. L. 1991. Design of an adaptive fuzzy logic controller using a genetic algorithm. In Proceedings of 4th Int. Conf. Genetic Algorithms. 450-457.
  26. Nomura, H. , Hayashi, I. and Wakami, N. 1992. A self tuning method of fuzzy control by genetic algorithm. In Proceedings Int'l Fuzzy systems Intell. Contr. Conf. (IFSICC'92), 236-245.
  27. Karr, C. L. and Gentry, E. J. 1993. Fuzzy control of pH using genetic algorithms. IEEE Transactions on Fuzzy Systems, vol. 1, no. 1, 46-53.
  28. Nelles, O. , Fischer, M. and Muller, B. 1996. Fuzzy rule extraction by a genetic algorithm and constrained nonlinear optimization of membership functions. In Proceedings of the 5th IEEE Int'l Conf. on Fuzzy Systems. vol. 1 (Sept. 1996), 213-219.
  29. Shi, Y. , Eberhart, R. and Chen, Y. 1999. Implementation of evolutionary fuzzy systems. IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, 109-119.
  30. Surmann, H. 2000. Learning a fuzzy rule based knowledge representation. In Proceeding of 2. ICSC Symp. on neural computation, NC'2000, Berlin. 349-355 (May 2000).
  31. Ashwani, K. , Agrawal, D. P. , and Joshi, S. D. 2003. A GA-based method for constructing TSK fuzzy rules from numerical data. IEEE Int'l Conf. on Fuzzy Syztems, 131-136.
  32. Hwang, H. S. 1999. Automatic design of fuzzy rule base for modeling and control using evolutionary programming. IEEE Proceedings-Control Theory Applications, vol. 146, no. 1, 9-16.
  33. Kang, S. J. , Woo, C. H. , Hwang, H. S. and Woo, K. B. 2000. Evolutionary design of fuzzy rule base for nonlinear system modeling and control. IEEE Transactions on Fuzzy Systems. vol. 8. no. 1, 37-45.
  34. Pal, T. , and Nikhil, R. P. 2003. SOGARG: A self organized genetic algorithm based rule generation scheme for fuzzy controllers. IEEE Transactions on Evolutionary Computation. vol. 7. no. 4 (Aug. 2003).
  35. Mansoori, E. G. , Zolghadri, M. J. , and Katebi, S. D. 2008. SGERD: A steady-state genetic algorithm for extracting fuzzy classification rules from data. IEEE Transactions on Fuzzy Systems. vol. 16. no. 4 (Aug. 2008), 1061-1071.
  36. Dorigo, M. , Maniezzo, V. , and Colorni, A. 1996. The Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics–Part B. vol. 26. no. 1, 1-13.
  37. Colorni, A. , Dorigo, M. , and Maniezzo, V. 1991. Distributed optimization by ant colonies. In Proceedings of the European Conference on Artificial Life, ECAL'91, Elsevier Publishing, Amsterdam.
  38. Dorigo, M. 1992. Optimization, learning and natural algorithms, Ph. D. Thesis, Politecnico di Milano, Milano.
  39. Dorigo, M. , and Gambardella L. M. 1997. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transaction on Evolutionary Computation 1 (1997), 53-66.
  40. Dorigo, M. , and Stutzle, T. 2005. Ant Colony Optimization, Eastern Economy Edition, PHI.
  41. Casillas, J. , Cordon, O. , and Herrera, F. 2000. Learning fuzzy rules using ant colony optimization algorithms. In Proceedings of 2nd Int. Workshop Ant Algorithms, 13-21.
  42. Parpinelli, R. S. , Lopes, H. S. , and Freitas, A. A. 2002. An ant colony algorithm for classification rule discovery in Data Mining: A Heuristic Approach. Idea Group Publishing, 190-208.
  43. Carmona, P. , and Castro, J. L. 2005. Using ant colony optimization for learning maximal structure fuzzy rules. In Proceedings of IEEE International Conference on Fuzzy Systems, 999-999.
  44. Kumar, S. 2005. Automatic Fuzzy rulebase generation. In Proceedings of the One week workshop on Applied Soft Computing, CAT, Harayana Engg. College, Jagadhri, Haryana, India, 26-42.
  45. Chia-Feng, J. , Huang, H. J. , and Lu, C. M. 2007. Fuzzy controller design by ant colony optimization. IEEE Proc. on Fuzzy Systems.
  46. Kumar, S. , and Bhalla, P. 2007. Fuzzy rulebase generation from numerical data using ant colony optimization. MAIMT- Journal of IT & Management. vol. 1, no. 1, 33-47.
  47. Kumar, S. , Kaur P. , and Singh, A. P. 2009. Soft computing approaches to fuzzy system identification: A survey. In Proceedings of 3rd International Conference on Intelligent Systems and Networks (IISN-2009), ISTK. Jagadhri. Haryana. India, 402-411.
  48. Simon, D. 2008. Biogeography-Based Optimization. IEEE Trans. on Evolutionary Computation, vol. 12, no. 6, 702-713.
  49. Erol, O. K. , and Eksin, I. 2006. A new optimization method: Big Bang-Big Crunch. Advances in Engineering Software, 37, 106-111.
  50. Kumbasar, T. , Yesil, E. , Eksin, I. , and Guzelkaya,M. 2008. Inverse fuzzy model control with online adaptation via Big Bang-Big Crunch optimization. ISCCSP 2008, Malta, 697-702.
  51. Kripka, M. , and Kripka, R. M. L. 2008. Big crunch optimization method. In Proceedings of International Conference on Engineering Optimization, Brazil.
  52. Kumar, S. , Kaur, P. , and Singh A. P. 2010. Knowledge Extraction from Numerical Data for Mamdani Type Fuzzy System using Big Bang-Big Crunch Optimization. In proceedings of International Conference on Future Challenges in Wireless Communication, Optical Communication and Networks (Nov. 2010), 45-53.
  53. Yang, X. S. 2009. Firefly algorithms for multimodal optimization, in: Stochastic Algorithms:Foundations and Appplications (Eds O. Watanabe and T. eugmann), SAGA 2009, Lecture Notes in ComputerScience, 5792, Springer-Verlag, Berlin,169-178.
  54. Yang, X. S. 2010. Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio-Inspired Computation, vol. 2, no. 2, 78-84
  55. Yang, X. S. 2010. Firefly algorithm, levy flights and global optimization. Research and Development in Intelligent Systems XXVI (Eds M. Bramer, R. Ellis, Petridis), Springer London, 209-218.
  56. Khosla, A. , Kumar, S. and Aggarwal, K. K. 2002. Design and development of RFC-10: A fuzzy logic based rapid battery charger for Nickel-Cadmium batteries. HiPC (High Performance Computing), Workshop on Soft Computing, Bangalore, 9-14.
  57. Linden, D. 1995. Handbook of Batteries, Mc. Graw Hill Inc.
  58. Khosla, A. , Kumar, S. and Aggarwal, K. K 2003. Identification of fuzzy controller for rapid nickel cadmium batteries charger through fuzzy C–means clustering algorithm. In Proceedings of 22nd International Conference of the North American Fuzzy Information Processing Society, Chicago, Illinois, USA, (July 24-26, 2003), 536–539.
  59. Khosla, A. , Kumar, S. , and Aggarwal, K. K. 2006. Fuzzy controller for rapid nickel-cadmium batteries charger through adaptive neuro-fuzzy inference system (ANFIS) architecture. In Proceedings of 22nd International Conference of the North American Fuzzy Information Processing Society, Chicago, Illinois, USA (July 24–26, 2003), 540–544.
  60. Kumar, S. 2010. Introduction to fuzzy logic based systems. In Proceedings of Workshop on Intelligent System Engineering (WISE-2010).
  61. Khosla, A. , Kumar, S. and Aggarwal, K. K. 2005. A framework for identification of fuzzy models through particle swarm optimization algorithm. In Proceedings of IEEE Indicon 2005 Conference, Chennai, India, 11-13 (Dec. 2005), 388-391.
  62. Blake, C. , Keogh, E. , and Merz, C. J. 1998. UCI Repository of Machine learning database, Univ. California, Irvine. http://www. ics. uci. edu/~mlearn/
  63. Nozaki, K. , Ishibuchi, H. , and Tanaka, H. 1996. Adaptive fuzzy rule-based classification systems. IEEE Trans. on Fuzzy Systems, vol. 4, no. 3 (Aug. 1996), 238-250.
  64. Chen, C. C. 2006. Design of PSO-based fuzzy classification systems. . Tamkang journal of science and engineering, vol. 9, no. 1, 63-70.
Index Terms

Computer Science
Information Sciences

Keywords

Fuzzy logic Firefly algorithm Rule Base Nature-inspired optimization Fuzzy Modeling