We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

IK-PSO, PSO Inverse Kinematics Solver with Application to Biped Gait Generation

by Nizar Rokbani, Adel M Alimi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 58 - Number 22
Year of Publication: 2012
Authors: Nizar Rokbani, Adel M Alimi
10.5120/9432-3844

Nizar Rokbani, Adel M Alimi . IK-PSO, PSO Inverse Kinematics Solver with Application to Biped Gait Generation. International Journal of Computer Applications. 58, 22 ( November 2012), 33-39. DOI=10.5120/9432-3844

@article{ 10.5120/9432-3844,
author = { Nizar Rokbani, Adel M Alimi },
title = { IK-PSO, PSO Inverse Kinematics Solver with Application to Biped Gait Generation },
journal = { International Journal of Computer Applications },
issue_date = { November 2012 },
volume = { 58 },
number = { 22 },
month = { November },
year = { 2012 },
issn = { 0975-8887 },
pages = { 33-39 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume58/number22/9432-3844/ },
doi = { 10.5120/9432-3844 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:03:13.658068+05:30
%A Nizar Rokbani
%A Adel M Alimi
%T IK-PSO, PSO Inverse Kinematics Solver with Application to Biped Gait Generation
%J International Journal of Computer Applications
%@ 0975-8887
%V 58
%N 22
%P 33-39
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper describes a new approach allowing the generation of a simplified Biped gait. This approach combines a classical dynamic modeling with an inverse kinematics' solver based on particle swarm optimization, PSO. First, an inverted pendulum, IP, is used to obtain a simplified dynamic model of the robot and to compute the target position of a key point in biped locomotion, the Centre Of Mass, COM. The proposed algorithm, called IK-PSO, Inverse Kinematics PSO, returns and inverse kinematics solution corresponding to that COM respecting the joints constraints. In This paper the inertia weight PSO variant is used to generate a possible solution according to the stability based fitness function and a set of joints motions constraints. The method is applied with success to a leg motion generation. Since based on a pre-calculated COM, that satisfied the biped stability, the proposal allowed also to plan a walk with application on a small size biped robot.

References
  1. M. Y. Al-Zaydi, S. H. M. Amin. 1997. Simulation kinematics model of a multi-legged mobile robot. in the Proc of 8th International Conference on Advanced Robotics, pp : 89-94.
  2. P. I Corke, P. I. 1996. A robotics toolbox for MATLAB. IEEE, Robotics & Automation Magazine, Volume: 3, Issue: 1,1996, pp: 24 – 32.
  3. A Jamali, R Khan, and M Rahman. 2011. A new geometrical approach to solve inverse kinematics of hyper redundant robots with variable link length. In Proc of Mechatronics (ICOM).
  4. H. Das, J. Slotine,T. B. Sheridan. 1988. Inverse kinematic algorithms for redundant systems. Proc of IEEE International Conference on Robotics and Automations, pp: 43-48.
  5. S. Alavandar, and M. J. Nigam. 2008. Neuro-Fuzzy based Approach for Inverse Kinematics solution of Industrial Robot Manipulators. Int. J. of Computers, Communications & Control, Vol. III , No. 3, pp : 224-234.
  6. K Parker, AR Khoogar, and D. E. Goldberg. 1989. "Inverse kinematics of redundant robots using genetic algorithms", In Proc of IEEE ICRA, pp: 271- 276.
  7. O. Chocron,and P. Bidaud. 1997. Evolutionary algorithms in kinematic design of robotic systems. In Proc of IROS'97, pp: 1111- 1117.
  8. R. Rajendra, and D. K. Pratihar. 2011. Multi-objective optimization in gait planning of biped robot using genetic algorithm and particle swarm optimization tool. Journal of Control Engineering and Technology, pp : 81-94.
  9. M. Vukobratovic, A. Frank, and D. Juricic. 1970. On the Stability of Biped Locomotion. IEEE Transactions on Biomedical Engineering, Volume: 17, Issue 1, pp: 25 – 36.
  10. N. Rokbani, B. Ammar Cherif and A. M. Alimi. 2009. Toward Intelligent Biped-Humanoids Gaits Generation. Humanoid Robots, Ben Choi (Ed. ), ISBN: 978-953-7619-44-2, InTech.
  11. J. Denavit, and R. S. Hartenberg. 1955. A kinematics notation for lower-pair mechanisms based on matrices. Journal. Applied mechanics. Vol 22, pp : 215-221.
  12. J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In Proc of IEEE International Conference on Neural Networks.
  13. Y. Shi, and R. Eberhart, 1998. A modified particle swarm optimizer. In Proc of the 1998 IEEE World Congress on Computational Intelligence and IEEE International Conference on Evolutionary Computation, pp: 69-73.
  14. W. Elloumi, N. Rokbani and A. M. Alimi. 2009. Ant supervised by PSO. In Proc of International symposium on Computational Intelligence and Intelligent Informatics, pp : 161-166.
  15. N. Rokbani, A. M. Adel, and B. Ammar. 2007. Architectural Proposal for a Robotized Intelligent humanoid, IZiman. In Proc of IEEE International Conference on Automation and Logistics, ICAL2007, pp: 1941 – 1946.
  16. N. Rokbani, EL. Benbousasa and A. M ALIMI. 2008. Particle Swarm Optimization for Humanoid Walking Gait Generation", In Proc of 11' Clawar 2008, ADVANCES IN MOBILE ROBOTICS, Chapter 90, pp: 744-751.
  17. N. Rokbani, E. B. Boussada, B. Ammar and A. M. Alimi. 2009. From GAITS TO ROBOT, A HYBRID METHODOLOGY FOR A BIPED WALKER. In Proc of 12' Clawar 2009. Mobile Robotics, chapter 84, pp: 685-692.
  18. N. Rokbani, E. Benbousaada, B. Ammar and A. M. Alimi. 2010. Biped robot control using particle swarm optimization. In Proc. of Intl. Conf. on Systems Man and Cybernetics (SMC 2010), pp: 506 -512.
  19. N. Rokbani, A. Zaidi and A. M Alimi. 2012. Prototyping a Biped Robot Using an Educational Robotics Kit. International Conference on Education and E-Learning Innovations, ICEELI'2012.
Index Terms

Computer Science
Information Sciences

Keywords

Biped robotics Gait generation Particle Swarm Optimization Inverse kinematics. Inertia weight PSO