We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

g*b-Homeomorphisms and Contra-g*b-continuous Maps in Topological Spaces

by D. Vidhya, R. Parimelazhagan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 58 - Number 14
Year of Publication: 2012
Authors: D. Vidhya, R. Parimelazhagan
10.5120/9347-3671

D. Vidhya, R. Parimelazhagan . g*b-Homeomorphisms and Contra-g*b-continuous Maps in Topological Spaces. International Journal of Computer Applications. 58, 14 ( November 2012), 1-7. DOI=10.5120/9347-3671

@article{ 10.5120/9347-3671,
author = { D. Vidhya, R. Parimelazhagan },
title = { g*b-Homeomorphisms and Contra-g*b-continuous Maps in Topological Spaces },
journal = { International Journal of Computer Applications },
issue_date = { November 2012 },
volume = { 58 },
number = { 14 },
month = { November },
year = { 2012 },
issn = { 0975-8887 },
pages = { 1-7 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume58/number14/9347-3671/ },
doi = { 10.5120/9347-3671 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:02:28.284417+05:30
%A D. Vidhya
%A R. Parimelazhagan
%T g*b-Homeomorphisms and Contra-g*b-continuous Maps in Topological Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 58
%N 14
%P 1-7
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we first introduce a new class of closed maps called g*b -closed map and gb-closed map. Also, we introduce a new class of homeomorphisms called g*b -homeomorphism, gb-homeomorphism and we investigate a new generalization of contra-continuity called contra- g*b -continuity.

References
  1. N. Biswas, On some mappings in topological spaces, Bull. Cal. Math. Soc. 61(1969), 127-135.
  2. S. G. Crossley and S. K. Hildebrand, semi-topological properties, Fund Math; 74(19720, 233-254.
  3. R. Devi, H. Maki,and K. Balachandran, Associ- ated topologies of generalized ?-closed sets and ?- generalized closed sets Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. 15(1994), 51-63.
  4. J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Sci. 19(2) (1996), 303-310.
  5. J. Dontchev and T. Noiri, Contra semi-continuous functions, Math. Pannon, 10(2)(1999), 159-168.
  6. S. Jafari and T. Noiri, Contra-?-continuous functions between topological spaces, Iran. Int. J. Sci. 2(2) (2001), 153-167.
  7. S. Jafari and T. Noiri, On contra-precontinuous func- tions, Bull. Malays. Math. Sci. Soc(2) 25(2) (2002), 115-128.
  8. S. R. Malghan, Generalized closed maps, J. Karnatak. Univ. Sci. , 27(1982), 82-88.
  9. A. S. Mashhour, I. A. Hasanein and S. N. EI-Deeb, On ?-continuous and ?-open mapping, Acta Math. Hungar, 41(1983), 213-218.
  10. A. A. Nasef, Some properties of Contra-?-continuous functions", Chaos Solitons Fractals 24(2005), 471-477.
  11. T. Noiri, On almost continuous functions, Indian J. Pure. Appl. Math. 20(1989), 571-576.
  12. A. A. Omari and M. S. M. Noorani, On Gen- eralized b-closed sets, Bull. Malays. Math. Sci. Soc(2),32(1)(2009), 19-30.
  13. P. Sundaram, Studies on Generalizations of con- tinuous maps in topological spaces, Ph. D. Thesis, Bharathiar University, Coimbatore(1991).
  14. D. Vidhya and R. Parimelazhagan , g*b -closed Sets in topological spaces,Int. J. Contemp. Math. Science 7(2012), 1305-1312.
  15. D. Vidhya and R. Parimelazhagan , g*b Continuous Maps and Pasting Lemma in Topological spaces, Int. J. Math. Analysis, 6(2012), 2307-2315.
Index Terms

Computer Science
Information Sciences

Keywords

g*b-closed map g*b-homeomorphism gb- closed map gb-homeomorphism contra- g*b-continuous