CFP last date
20 January 2025
Reseach Article

Application of Soft Computing Methods for Economic Load Dispatch Problems

by Hardiansyah, Junaidi, Yohannes Ms
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 58 - Number 13
Year of Publication: 2012
Authors: Hardiansyah, Junaidi, Yohannes Ms
10.5120/9344-3664

Hardiansyah, Junaidi, Yohannes Ms . Application of Soft Computing Methods for Economic Load Dispatch Problems. International Journal of Computer Applications. 58, 13 ( November 2012), 33-38. DOI=10.5120/9344-3664

@article{ 10.5120/9344-3664,
author = { Hardiansyah, Junaidi, Yohannes Ms },
title = { Application of Soft Computing Methods for Economic Load Dispatch Problems },
journal = { International Journal of Computer Applications },
issue_date = { November 2012 },
volume = { 58 },
number = { 13 },
month = { November },
year = { 2012 },
issn = { 0975-8887 },
pages = { 33-38 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume58/number13/9344-3664/ },
doi = { 10.5120/9344-3664 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:02:26.166865+05:30
%A Hardiansyah
%A Junaidi
%A Yohannes Ms
%T Application of Soft Computing Methods for Economic Load Dispatch Problems
%J International Journal of Computer Applications
%@ 0975-8887
%V 58
%N 13
%P 33-38
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Economic load dispatch problem is an optimization problem where objective function is highly non linear, non-convex, non differentiable and may have multiple local minima. Therefore, classical optimization methods may not converge or get trapped to any local minima. This paper presents a comparative study of three different evolutionary algorithms i. e. differential evolution, artificial bee colony algorithm and particle swarm optimization for solving the economic load dispatch problem. All the methods are tested on 3-units and 6-units test system. Simulation results are presented to show the comparative performance of these methods.

References
  1. B. H. Chowdhury and S. Rahman. 1990. "A review of recent advances in economic dispatch," IEEE Transactions on Power Systems, vol. 5 (4), pp. 1248-1259
  2. A. J. Wood and B. F. Wollenberg. 1984. "Power Generation, Operation, and Control", John Wiley and Sons, New York
  3. J. B. Park, K. S. Lee, J. R. Shin and K. Y. Lee. 2005. "A particle swarm optimization for economic dispatch with non smooth cost functions", IEEE Trans. on Power Systems, vol. 20 (1), pp. 34-42
  4. D. C. Walters and G. B. Sheble. 1993. "Genetic algorithm solution of economic dispatch with the valve-point loading", IEEE Trans. on Power Systems, vol. 8 (3), pp. 1125-1132
  5. K. Lenin and M. R. Mohan. 2006. "Ant colony search algorithm for optimal reactive power optimization", Serbian Journal of electrical Engineering, vol. 3 (1), pp. 77-88
  6. H. T. Yang, P. C. Yang and C. L. Huang. 1996. "Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions", IEEE Transactions on Power Systems, vol. 11 (1), pp. 112-118
  7. W. M. Lin, F. S. Cheng and M. T. Tsay. 2002. "An improved tabu search for economic dispatch with multiple minima", IEEE Trans. on Power Systems, vol. 17 (1), pp. 108-112
  8. Nasimul Nomana, Hitoshi Iba. 2008. "Differential evolution for economic load dispatch problems", Electric Power Systems Research, vol. 78, pp. 1322-1331
  9. Pancholi, R. K. , and Swarup, K. S. 2004. "Particle swarm optimization for security constrained economic dispatch", International Conference on Intelligent Sensing and Information Processing, Chennai, India, pp. 712
  10. H. Gozde, M. C. Taplamacioglu, and I. Kocaarslan. 2010. "Application of artificial bee colony algorithm in an automatic voltage regulator (AVR) system", vol. 2 (4), pp. 88-92
  11. R. Storn, and K. V. Price. 1997. "Differential evolution a simple and efficient heuristic for global optimization over continuous spaces", J. Global Optim. Vol. 11 (4) , pp. 341–359
  12. K. V. Price, R. M. Storn, and J. A. Lampinen. 2005. " Differential evolution: a practical approach to global optimization", Springer, Berlin, Heidelberg
  13. T. Takahama, and S. Sakai. 2006. "Constrained optimization by the epsilon constrained differential evolution with gradient-based mutation and feasible elites", Proceedings of the 2006 IEEE Congress on Evolutionary Computation, pp. 308–315.
  14. D. Karaboga, and B. Basturk. 2008. "On the performance of artificial bee colony (ABC) algorithm", Applied Soft Computing, vol. 8 (1), pp. 687- 697
  15. Dervis Karaboga, and Bahriye Akay. 2009. "A comparative study of artificial bee colony algorithm", App. Mathematics and Computation, Elsevier, pp. 108-132
  16. J. Kennedy, and R. C. Eberhart. 1995. "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks (ICNN'95), Perth, Australia, vol. 4, pp. 1942-1948
  17. Y. Shi and R. C. Eberhart. 2001. "Particle swarm optimization: development, applications, and resources, Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81-86
  18. M. Vanitha, and K. Tanushkodi. 2011. "Solution to economic dispatch problem by differential evolution algorithm considering linear equality and inequality constrains", International Journal of Research and Reviews in Electrical and Computer Engineering, vol. 1(1), pp. 21-26
  19. Attia A. El-Fergany. 2011. "Solution of economic load dispatch problem with smooth and non-smooth fuel cost functions including line losses using genetic algorithm", International Journal of Computer and Electrical Engineering, vol. 1 (2), pp. 706-710
Index Terms

Computer Science
Information Sciences

Keywords

Economic Load Dispatch Differential Evolution Artificial Bee Colony Particle Swarm Optimization