CFP last date
20 December 2024
Reseach Article

Performance Analysis of Neural Network Architecture Combined with DWT for Image Compression

by Murali Mohan.s, P. Satyanarayana
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 58 - Number 11
Year of Publication: 2012
Authors: Murali Mohan.s, P. Satyanarayana
10.5120/9325-3629

Murali Mohan.s, P. Satyanarayana . Performance Analysis of Neural Network Architecture Combined with DWT for Image Compression. International Journal of Computer Applications. 58, 11 ( November 2012), 13-20. DOI=10.5120/9325-3629

@article{ 10.5120/9325-3629,
author = { Murali Mohan.s, P. Satyanarayana },
title = { Performance Analysis of Neural Network Architecture Combined with DWT for Image Compression },
journal = { International Journal of Computer Applications },
issue_date = { November 2012 },
volume = { 58 },
number = { 11 },
month = { November },
year = { 2012 },
issn = { 0975-8887 },
pages = { 13-20 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume58/number11/9325-3629/ },
doi = { 10.5120/9325-3629 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:03:24.907210+05:30
%A Murali Mohan.s
%A P. Satyanarayana
%T Performance Analysis of Neural Network Architecture Combined with DWT for Image Compression
%J International Journal of Computer Applications
%@ 0975-8887
%V 58
%N 11
%P 13-20
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Neural networks are significantly used in signal and image processing techniques for pattern recognition and template matching. In this work neural networks are used for image compression. In order to improve the performances image compression algorithm, DWT is combined with NN for achieving better MSE and increase in compression ration greater than 100%. NN architecture achieves maximum of 98% with use of four neurons in the hidden layer, with selection of LL sub band only the compression is improved by another 75%. The proposed architecture is analyzed for 20 images and MSE is found to be improved by a factor of 20%. Daubechies wavelet filter and Haar wavelet filters are used for DWT, input layer with one hidden layer and output layer consisting of tansig and purelin function us used for compression. The design proposed is suitable for high resolution image compression.

References
  1. Q. Zang, Wavelet Network in Nonparametric Estimation. IEEE Trans. Neural Networks, 8(2):227- 236, 1997
  2. Q. Zang and A. Benveniste, Wavelet networks. IEEE Trans. Neural Networks, vol. 3, pp. 889-898, 1992.
  3. A. Grossmann and B. Torrésani, Les ondelettes, Encyclopedia Universalis, 1998.
  4. R. Ben Abdennour, M. Ltaïef and M. Ksouri. uncoefficient d'apprentissage flou pour les réseaux deneurones artificiels, Journal Européen des Systèmes Automatisés, Janvier 2002.
  5. M. Chtourou. Les réseaux de neurones, Support de cours DEA A-II, Année Universitaire 2002/2003.
  6. Y. Oussar. Réseaux d'ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus, Thèse de doctorat, Université Pierre et Marie Curie, juillet 1998.
  7. R. Baron. Contribution à l'étude des réseaux d'ondelettes, Thèse de doctorat, Ecole Normale Supérieure de Lyon, Février 1997.
  8. C. Foucher and G. Vaucher. Compression d'images et réseaux de neurones, revue Valgo n°01-02, 17-19 octobre 2001,Ardèche.
  9. J. Jiang. Image compressing with neural networks – A survey, Signal processing Image communication, ELSEVIER, vol. 14, n°9, 1999, p. 737-760.
  10. S. Kulkarni, B. Verma and M. Blumenstein. Image Compression Using a Direct Solution Method Based NeuralNetwork, The Tenth Australian Joint Conference on Artificial Intelligence,Perth, Australia, 1997, p. 114-119.
  11. G. Lekutai. Adaptive Self-tuning Neuro Wavelet Network Controllers, Thèse de Doctorat, Blacksburg-Virgina, Mars 1997.
  12. R. D. Dony and S. Haykin. Neural network approaches to imagcompression, Proceedings of the IEEE, V83, N°2, Février, 1995, p. 288-303.
  13. A. D'souza Winston and Tim Spracklen. Application of Artificial Neural Networks for real time Compression, 8th International Conference On Neural Processing, Shanghai, Chine, 14-18 Novembre 2001.
  14. Ch. Bernard, S. Mallat and J-J Slotine. Wavelet Interpolation NetworksInternational Workshop on CAGD and wavelet methods for ReconstructingFunctions, Montecatini, 15-17 Juin 1998.
  15. D. Charalampidis. Novel Adaptive Image Compression, Workshop on Information and Systems Technology, Room 101, TRAC Building, University of New Orleans, 16 Mai 2003.
  16. M. J. Nadenau, J. Reichel, and M. Kunt, "Wavelet Based Color Image CompressioExploiting the Contrast Sensitivity Function", IEEE Transactions Image Processing, vol. 12, no. 1, 2003, pp. 58-70.
  17. K. Ratakonda and N. Ahuja, "Lossless Image Compression with Multiscale Segmentation", IEEE Transactions Image Processing, vol. 11, no. 11, 2002,pp. 1228-1237.
  18. K. H. Talukder and K. Harada, "Haar Wavelet Based Approach for ImageCompression and Quality Assessment of Compressed Image", IAENG International Journal of Applied Mathematics, 2007.
  19. Bo-Luen Lai and Long-Wen Chang, "Adaptive Data Hiding for Images Based on Haar Discrete Wavelet Transform", Lecture Notes in Computer Science, Springer-Verlag, vol. 4319,2006, pp. 1085-1093.
  20. S. Minasyan, J. Astola and D. Guevorkian, "An Image CompressionScheme Based on Parametric Haar-like Transform", ISCAS 2005. IEEE International Symposium on Circuits and Systems, 2005, pp. 2088-2091.
  21. Z. Ye, H. Mohamadian and Y. Ye, "Information Measures for Biometric Identification via 2D Discrete WaveletTransform", Proceedings of the 3rd Annual IEEE Conference on Automation Science and Engineering, CASE'2007, 2007, pp. 835-840.
  22. S. Osowski, R. Waszczuk, P. Bojarczak, "Image compression using feed forward neural networks — Hierarchical approach" Lecture Notes in Computer Science, Book Chapter, Springer- Verlag, vol. 3497, 2006, pp. 1009- 1015.
  23. M. Liying and K. Khashayar, "Adaptive Constructive Neural Networks Using Hermite Polynomials for Image Compression", Lecture Notes in Computer Science, Springer-Verlag, vol. 3497, 2005, pp. 713-722.
  24. R. Cierniak, "Image Compression Algorithm Based on Soft Computing Techniques", Lecture Notes in Computer Science, Springer-Verlag, vol. 3019,2004, pp. 609-617.
  25. B. Northan, and R. D. Dony, "Image Compression with a multiresolution neural network", Canadian Journal of Electrical and Computer Engineering, Vol. 31, No. 1, 2006, pp. 49-58.
  26. S. Veisi and M. Jamzad, "Image Compression with Neural Networks Using Complexity Level of Images", Proceedings of the 5th International Symposium on image and Signal Processing and Analysis, ISPA07, IEEE, 2007, pp. 282-287.
  27. I. Vilovic, "An Experience in Image Compression Using Neural Networks", 48th International Symposium ELMAR 2006 focused on Multimedia Signal Processing and Communications, IEEE, 2006, pp. 95-98.
  28. J. Mi, D. Huang, "Image Compression using Principal Component Neural Network", 8th International Conference on Control, Automation, Robotics and Vision, IEEE, 2004,pp. 698-701.
  29. R. Ashraf and M. Akbar, "Absolutely lossless compression of medical images", 27th Annual Conference Proceedings of the 2005 IEEE Engineering in Medicine and Biology, IEEE, 2005, pp. 4006-4009.
  30. A. Khashman and K. Dimililer, "Neural Networks Arbitration for Optimum DCT Image Compression", Proceeding of the IEEE International Conference on 'Computer as a Tool' EUROCON'07, 2007, pp. 151-156.
  31. A. Khashman and K. Dimililer, "Intelligent System for Image Compression", Proceeding of 9th International Conference on Enterprise Information Systems, ICEIS 2007, 2007,pp. 451-454.
  32. A. Khashman and K. Dimililer, "Comparison Criteria for Optimum Image Compression", Proceeding of the IEEE International Conference on 'Computer as a Tool' EUROCON'05, vol. 2, 2005, pp. 935-938.
  33. A. Khashman and K. Dimililer, "Haar Image Compression Using a Neural Network", Proceedings of the WSEAS Int. Applied Computing Conference (ACC'08), Istanbul, Turkey, 27-29 May 2008.
  34. A. Khashman, B. Sekeroglu, and K Dimililer, "Intelligent Identification System for Deformed Banknotes", WSEAS Transactions on Signal Processing, ISSN 1790-5022, Issue 3, Vol. 1, 2005.
  35. K. Venkata Ramanaiah and Cyril Prasanna Raj, "ASIC Implementation of Neural Network Based Image Compression," International Journal of Computer Theory and Engineering vol. 3, no. 4, pp. 494-498, 2011
Index Terms

Computer Science
Information Sciences

Keywords

DWT neural network image compression hybrid technique