CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Dynamics of Antifractals in Noor Orbit

by Ashish, Mamta Rani, Renu Chugh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 57 - Number 4
Year of Publication: 2012
Authors: Ashish, Mamta Rani, Renu Chugh
10.5120/9101-3236

Ashish, Mamta Rani, Renu Chugh . Dynamics of Antifractals in Noor Orbit. International Journal of Computer Applications. 57, 4 ( November 2012), 11-15. DOI=10.5120/9101-3236

@article{ 10.5120/9101-3236,
author = { Ashish, Mamta Rani, Renu Chugh },
title = { Dynamics of Antifractals in Noor Orbit },
journal = { International Journal of Computer Applications },
issue_date = { November 2012 },
volume = { 57 },
number = { 4 },
month = { November },
year = { 2012 },
issn = { 0975-8887 },
pages = { 11-15 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume57/number4/9101-3236/ },
doi = { 10.5120/9101-3236 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:59:33.943637+05:30
%A Ashish
%A Mamta Rani
%A Renu Chugh
%T Dynamics of Antifractals in Noor Orbit
%J International Journal of Computer Applications
%@ 0975-8887
%V 57
%N 4
%P 11-15
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Interesting antifractals are involved in the dynamics of antipolynomials , for m ? 2. The purpose of this paper is to visualize antifractals in Noor orbit and study the pattern among them.

References
  1. Ashish, M. Rani, and R. Chugh, New Julia sets and Mandelbrot sets in Noor orbit, (preprint), 2012.
  2. Y. S. Chauhan, R. Rana, and A. Negi, New tricorn and multicorn of Ishikawa iterates, Int. J. Comput. Appl. , (7)(13)(2010), 25-33.
  3. W. D. Crowe, R. Hasson, P. J. Rippon, and P. E. D. Strain-Clark, On the structure of the Mandelbar set, Nonlinearity, (2)(4)(1989), 541-553.
  4. R. L. Devaney, A first course in chaotic dynamical systems: theory and experiment, Addison-Wesley, New York, 1992.
  5. E. Lau, and D. Schleicher, Symmetries of fractals revisited. Math. Intelligencer (18)(1)(1996), 45-51.
  6. S. Nakane, and D. Schleicher, On multicorns and unicorns: I. Antiholomorphic dynamics hyperbolic components and real cubic polynomials, Int. J. Bifur. Chaos Appl. Sci. Engr. , (13)(10)(2003), 2825-2844.
  7. M. A Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. , (251)(2000), 217-229.
  8. H. O. Peitgen, H. Jurgens, and D. Saupe, Chaos and Fractals, Springer-Verlag, New York, 1994.
  9. M. Rani, Superior antifractals, in: IEEE Proc. ICCAE 2010, vol. 1, 798-802.
  10. M. Rani, Superior tricorns and multicorns, in: Proc. 9th WSEAS Int. Conf. on Appl. Comp. Engg. (ACE'10), 2010, 58-61.
  11. M. Rani, and M. Kumar, Circular saw Mandelbrot sets, in: Proc. 14th WSEAS Int. Conf. on Appl. Math. (Math'09), 2009, 131-136.
  12. R. Winters, Bifurcations in families of antiholomorphic and biquadratic maps, Ph. D Thesis, Boston Univ. , London, 1990.
  13. Zazzle, http://www. zazzle. com/tricorn+gifts
Index Terms

Computer Science
Information Sciences

Keywords

Antipolynomial antifractal tricorn multicorn antiJulia set four-step feedback process Noor orbit