International Journal of Computer Applications |
Foundation of Computer Science (FCS), NY, USA |
Volume 57 - Number 20 |
Year of Publication: 2012 |
Authors: E. Syed Mohamed, S. Rajasekaran |
10.5120/9230-3790 |
E. Syed Mohamed, S. Rajasekaran . Tsunami Wave Propagation Models based on Two-Dimensional Cellular Automata. International Journal of Computer Applications. 57, 20 ( November 2012), 21-29. DOI=10.5120/9230-3790
Tsunami is a natural disaster which can cause great economic losses and make eco-environment seriously disordered. As of today, no technology exists to predict a tsunami source event well in advance. In this paper, some physically realistic ocean parameters have been considered. For tsunami propagation in real-time simulation, approaches have been used and different modifications of well known tsunami propagation models are developed to explore the sensitivity of the computational results to the variation of major model parameters. The tsunami waves are divided into two categories and our models are applied to eight cases depending on homogenous and non-homogeneous ocean wave conditions for different rates of spread. The algorithm is efficient and easily implemented, allowing less computational time and cost. The results obtained are found to be in agreement with the results of tsunami wave propagation in real seas. The first part of the paper describes the structure of the system, the underlying cellular automata models and the final part shows the activation of the system and the calculated results.