We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Call for Paper
December Edition
IJCA solicits high quality original research papers for the upcoming December edition of the journal. The last date of research paper submission is 20 November 2024

Submit your paper
Know more
Reseach Article

VLSI Implementation of 4-bit 50Gbps High Speed Pipelined ADC Architecture for I-UWB Receiver

by K. Lokesh Krishna, T. Ramashri
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 57 - Number 15
Year of Publication: 2012
Authors: K. Lokesh Krishna, T. Ramashri
10.5120/9193-3621

K. Lokesh Krishna, T. Ramashri . VLSI Implementation of 4-bit 50Gbps High Speed Pipelined ADC Architecture for I-UWB Receiver. International Journal of Computer Applications. 57, 15 ( November 2012), 32-37. DOI=10.5120/9193-3621

@article{ 10.5120/9193-3621,
author = { K. Lokesh Krishna, T. Ramashri },
title = { VLSI Implementation of 4-bit 50Gbps High Speed Pipelined ADC Architecture for I-UWB Receiver },
journal = { International Journal of Computer Applications },
issue_date = { November 2012 },
volume = { 57 },
number = { 15 },
month = { November },
year = { 2012 },
issn = { 0975-8887 },
pages = { 32-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume57/number15/9193-3621/ },
doi = { 10.5120/9193-3621 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:00:34.820253+05:30
%A K. Lokesh Krishna
%A T. Ramashri
%T VLSI Implementation of 4-bit 50Gbps High Speed Pipelined ADC Architecture for I-UWB Receiver
%J International Journal of Computer Applications
%@ 0975-8887
%V 57
%N 15
%P 32-37
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this work, a 4-bit pipelined ADC that provides the high speed conversion needed in UWB applications with sampling frequency of the order 50 Gbps is proposed. The pipelined ADC designed uses a high speed 1-bit comparator, wide band amplifier, sampling circuit and a high speed buffer. The individual blocks are designed using 130nm CMOS low power library cells. The individual blocks are designed to operate at a frequency greater than 50 Gbps sampling rate. In order to operate increase the operating frequency of the pipelined ADC, Specific new design techniques/algorithms such as power-efficient, capacitor ratio-independent conversion scheme, a pipeline stage-scaling algorithm, a nested CMOS gain-boosting technique, an amplifier and comparator sharing technique, and the use of minimum channel-length, thin oxide transistors with clock bootstrapping and in-line switch techniques are adopted.

References
  1. Bevilacqua, A. , and Niknejad, A. M. (2004) 'An Ultra-Wideband CMOS LNA for 3. 1 to 10. 6GHz Wireless Receivers'. IEEE International Solid State Circuits Conference (ISSCC), 381-382.
  2. J. H. Reed (Editor), "An introduction to ultra wideband communication systems," Prentice Hall, 2005
  3. F. Lee and A. Chandrakasan, "A 2. 5nJ/b 0. 65V 3-to-5GHz Sub banded UWB Receiver in 90nm CMOS," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2007, pp. 116–590.
  4. Andersson, S. , Svensson, C. , and Drugge, O. (2003) 'Wideband LNA for a Multistandard Wireless Receiver in 0. 18 ?m CMOS'. Conference on ESSCIRC, 655-658.
  5. Bottomley, G. E. , Ottosson, T. , and Wang, Y. P. E. (2000) 'A generalized RAKE receiver for interference suppression'. IEEE Journal on Selected Areas in Communications, 18(8), 1536-1545.
  6. Fullerton, L. W. (2000) 'Reopening the electromagnetic spectrum with ultra wideband radio for Aerospace'. IEEE Aerospace Conference Proceedings, 11, 201-210.
  7. Gangyaokuang, C. , and Zhonglianglu, S. (1995) 'A Way of Multi-channel A/D for UWB Signal'. IEEE NAECON 1, 206-209 .
  8. D. O'Donnell, and R. W. Brodersen, "An ultra-wideband transceiver architecture for low power, low rate, wireless systems," IEEE Transactions on Vehicular Technology, vol. 54, no. 5, pp. 1623-1631. September 2005.
  9. Namgoong, W. (2003) 'A Channelized Digital Ultra wideband Receiver'. IEEE Transactions on Wireless Communications, 2(3), 502-510.
  10. L. Feng, and W. Namgoong, "An oversampled channelized UWB receiver with transmitter reference modulation," IEEE Transactions on Wireless Communications, vol. 5, no. 6, pp. 1497-1505, June 2006.
  11. Hyung-Jin Lee. (2006) Digital CMOS Design for Ultra Wideband Communication Systems: from Circuit-Level Low Noise Amplifier Implementation to a System-Level Architecture. Doctor of Philosophy in Electrical Engineering, VA.
  12. Scholtz, R. A. , and Win, M. Z. (1997), 'Impulse Radio'. Invited Paper, IEEE PIMRC '97, Helsinki.
  13. Fontana, R. J. , Ameti, A. , Richley, E. , Beard, L. , and Guy, D. (2002) 'Recent advances in ultra wideband communications systems' Digest of Papers IEEE Conference on Ultra Wideband Systems and Technologies, 129-133.
  14. Fullerton, L. W. (2000) 'Reopening the electromagnetic spectrum with ultra wideband radio for Aerospace'. IEEE Aerospace Conference Proceedings, 11, 201-210.
  15. H. J. Lee, D. S. Ha, and H. S. Lee, "A frequency-domain approach for all-digital CMOS ultra wideband receivers," IEEE Conference on Ultra Wideband Systems and Technologies, pp. 86-90, November 2003.
  16. Donnell, O. , Chen, M. , Wang, S. , and Brodersen, R. W. (2002) 'An Integrated, Low-Power, Ultra-Wideband Transceiver Architecture for Low-Rate, Indoor Wireless Systems'. IEEE CAS Workshop on Wireless Communications and Networking.
  17. Yang, W. , and Tan, Z. , (2003) 'A cumulant-based 2D-RAKE receiver for CDMA system over frequency-selective fading channels'. IEEE Vehicular Technology Conference.
  18. Foerster, J. (2003) 'Channel modeling sub-committee report final'. IEEE document number #02490r1-SG3a.
  19. G. Geelen, "A 6b 1. IGSample/s CMOS A/D Converter" IEEE International Solid-State Circuits Conference, pp. 128-129, Feb. 2001.
  20. M. Choi and A. A. Abidi, "A 6-b 1. 3-Gsample/s A/D converter in 0. 35ptm CMOS," IEEE J. Solid-State Circuits, vol. 36, pp. 1847-1858, Dec. 2001.
  21. P. S. Scholtens and M. Vertregt, "A 6-b 1. 6GSample/s Flash ADC in 0. 184tm CMOS Using Averaging Termination," IEEE J. Solid-State Circuits, vol. 37, pp. 1599-1609, Dec. 2002.
  22. W. Cheng, W. Ali, M. Choi, K. Liu, T. Tat, D. Devendorf, L. Linder, and R. Stevens,"A 3b 40GS/s ADC-DAC in 0. 12ptm SiGe" IEEE International Solid-State Circuits Conference, pp. 262-263, Feb. 2004.
  23. A. Varzaghani and C. K. K. Yang, "A 600 MS/s 5-bit pipelined analog-to-digital converter using Digital reference Calibration", IEEE Journal of Solid-State Circuits, vol. 41, no. 2, pp. 1-4, Feb. 2006.
  24. Cyril Prasanna Raj P. , Selva Kumar and Raman, 'Design and VLSI implementation of 110MS/s pipelined ADC for imaging applications', SASTech Journal, http://www. msrsas. org/docs/programme/2009/224%20Raman%20B. pdf.
  25. Cyril Prasanna Raj P and Karthik Reddy, 'Design and VLSI Implementation of 12-bit 75MHz pipelined ADC with open loop residue amplification', http://www. msrsas. org/docs/programme/2008/219%20Karthik%20thouti%20Reddy. pdf.
  26. Lin, T. T. , and Li, C. P. (2002) 'Smart antenna based interference-blocking RAKE receiver for CDMA systems over multipath fading channel'. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.
  27. Yang, W. , and Tan, Z. , (2003) 'A cumulant-based 2D-RAKE receiver for CDMA system over frequency-selective fading channels'. IEEE Vehicular Technology Conference.
  28. Yi-Jing Lin. , Shawn S. H. Hsu. , Jun-De Jin. , and Chan, C. Y. (2007) 'A 3. 1–10. 6 GHz Ultra-Wideband CMOS Low Noise Amplifier with Current-Reused Technique'. IEEE Microwave and Wireless Components Letters. 17(3).
  29. Batra, J. Balakrishnan, and A. Dabak, "Multi-band OFDM: a new approach for UWB," IEEE International Symposium on Circuits and Systems, vol. 5, pp. 365-368, May 2004.
Index Terms

Computer Science
Information Sciences

Keywords

I-UWB receiver pipelined ADC high speed CMOS gain boosting clock boot strapping