CFP last date
20 January 2025
Reseach Article

VLSI Implementation of 4-bit 50Gbps High Speed Pipelined ADC Architecture for I-UWB Receiver

by K. Lokesh Krishna, T. Ramashri
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 57 - Number 15
Year of Publication: 2012
Authors: K. Lokesh Krishna, T. Ramashri
10.5120/9193-3621

K. Lokesh Krishna, T. Ramashri . VLSI Implementation of 4-bit 50Gbps High Speed Pipelined ADC Architecture for I-UWB Receiver. International Journal of Computer Applications. 57, 15 ( November 2012), 32-37. DOI=10.5120/9193-3621

@article{ 10.5120/9193-3621,
author = { K. Lokesh Krishna, T. Ramashri },
title = { VLSI Implementation of 4-bit 50Gbps High Speed Pipelined ADC Architecture for I-UWB Receiver },
journal = { International Journal of Computer Applications },
issue_date = { November 2012 },
volume = { 57 },
number = { 15 },
month = { November },
year = { 2012 },
issn = { 0975-8887 },
pages = { 32-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume57/number15/9193-3621/ },
doi = { 10.5120/9193-3621 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:00:34.820253+05:30
%A K. Lokesh Krishna
%A T. Ramashri
%T VLSI Implementation of 4-bit 50Gbps High Speed Pipelined ADC Architecture for I-UWB Receiver
%J International Journal of Computer Applications
%@ 0975-8887
%V 57
%N 15
%P 32-37
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this work, a 4-bit pipelined ADC that provides the high speed conversion needed in UWB applications with sampling frequency of the order 50 Gbps is proposed. The pipelined ADC designed uses a high speed 1-bit comparator, wide band amplifier, sampling circuit and a high speed buffer. The individual blocks are designed using 130nm CMOS low power library cells. The individual blocks are designed to operate at a frequency greater than 50 Gbps sampling rate. In order to operate increase the operating frequency of the pipelined ADC, Specific new design techniques/algorithms such as power-efficient, capacitor ratio-independent conversion scheme, a pipeline stage-scaling algorithm, a nested CMOS gain-boosting technique, an amplifier and comparator sharing technique, and the use of minimum channel-length, thin oxide transistors with clock bootstrapping and in-line switch techniques are adopted.

References
  1. Bevilacqua, A. , and Niknejad, A. M. (2004) 'An Ultra-Wideband CMOS LNA for 3. 1 to 10. 6GHz Wireless Receivers'. IEEE International Solid State Circuits Conference (ISSCC), 381-382.
  2. J. H. Reed (Editor), "An introduction to ultra wideband communication systems," Prentice Hall, 2005
  3. F. Lee and A. Chandrakasan, "A 2. 5nJ/b 0. 65V 3-to-5GHz Sub banded UWB Receiver in 90nm CMOS," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2007, pp. 116–590.
  4. Andersson, S. , Svensson, C. , and Drugge, O. (2003) 'Wideband LNA for a Multistandard Wireless Receiver in 0. 18 ?m CMOS'. Conference on ESSCIRC, 655-658.
  5. Bottomley, G. E. , Ottosson, T. , and Wang, Y. P. E. (2000) 'A generalized RAKE receiver for interference suppression'. IEEE Journal on Selected Areas in Communications, 18(8), 1536-1545.
  6. Fullerton, L. W. (2000) 'Reopening the electromagnetic spectrum with ultra wideband radio for Aerospace'. IEEE Aerospace Conference Proceedings, 11, 201-210.
  7. Gangyaokuang, C. , and Zhonglianglu, S. (1995) 'A Way of Multi-channel A/D for UWB Signal'. IEEE NAECON 1, 206-209 .
  8. D. O'Donnell, and R. W. Brodersen, "An ultra-wideband transceiver architecture for low power, low rate, wireless systems," IEEE Transactions on Vehicular Technology, vol. 54, no. 5, pp. 1623-1631. September 2005.
  9. Namgoong, W. (2003) 'A Channelized Digital Ultra wideband Receiver'. IEEE Transactions on Wireless Communications, 2(3), 502-510.
  10. L. Feng, and W. Namgoong, "An oversampled channelized UWB receiver with transmitter reference modulation," IEEE Transactions on Wireless Communications, vol. 5, no. 6, pp. 1497-1505, June 2006.
  11. Hyung-Jin Lee. (2006) Digital CMOS Design for Ultra Wideband Communication Systems: from Circuit-Level Low Noise Amplifier Implementation to a System-Level Architecture. Doctor of Philosophy in Electrical Engineering, VA.
  12. Scholtz, R. A. , and Win, M. Z. (1997), 'Impulse Radio'. Invited Paper, IEEE PIMRC '97, Helsinki.
  13. Fontana, R. J. , Ameti, A. , Richley, E. , Beard, L. , and Guy, D. (2002) 'Recent advances in ultra wideband communications systems' Digest of Papers IEEE Conference on Ultra Wideband Systems and Technologies, 129-133.
  14. Fullerton, L. W. (2000) 'Reopening the electromagnetic spectrum with ultra wideband radio for Aerospace'. IEEE Aerospace Conference Proceedings, 11, 201-210.
  15. H. J. Lee, D. S. Ha, and H. S. Lee, "A frequency-domain approach for all-digital CMOS ultra wideband receivers," IEEE Conference on Ultra Wideband Systems and Technologies, pp. 86-90, November 2003.
  16. Donnell, O. , Chen, M. , Wang, S. , and Brodersen, R. W. (2002) 'An Integrated, Low-Power, Ultra-Wideband Transceiver Architecture for Low-Rate, Indoor Wireless Systems'. IEEE CAS Workshop on Wireless Communications and Networking.
  17. Yang, W. , and Tan, Z. , (2003) 'A cumulant-based 2D-RAKE receiver for CDMA system over frequency-selective fading channels'. IEEE Vehicular Technology Conference.
  18. Foerster, J. (2003) 'Channel modeling sub-committee report final'. IEEE document number #02490r1-SG3a.
  19. G. Geelen, "A 6b 1. IGSample/s CMOS A/D Converter" IEEE International Solid-State Circuits Conference, pp. 128-129, Feb. 2001.
  20. M. Choi and A. A. Abidi, "A 6-b 1. 3-Gsample/s A/D converter in 0. 35ptm CMOS," IEEE J. Solid-State Circuits, vol. 36, pp. 1847-1858, Dec. 2001.
  21. P. S. Scholtens and M. Vertregt, "A 6-b 1. 6GSample/s Flash ADC in 0. 184tm CMOS Using Averaging Termination," IEEE J. Solid-State Circuits, vol. 37, pp. 1599-1609, Dec. 2002.
  22. W. Cheng, W. Ali, M. Choi, K. Liu, T. Tat, D. Devendorf, L. Linder, and R. Stevens,"A 3b 40GS/s ADC-DAC in 0. 12ptm SiGe" IEEE International Solid-State Circuits Conference, pp. 262-263, Feb. 2004.
  23. A. Varzaghani and C. K. K. Yang, "A 600 MS/s 5-bit pipelined analog-to-digital converter using Digital reference Calibration", IEEE Journal of Solid-State Circuits, vol. 41, no. 2, pp. 1-4, Feb. 2006.
  24. Cyril Prasanna Raj P. , Selva Kumar and Raman, 'Design and VLSI implementation of 110MS/s pipelined ADC for imaging applications', SASTech Journal, http://www. msrsas. org/docs/programme/2009/224%20Raman%20B. pdf.
  25. Cyril Prasanna Raj P and Karthik Reddy, 'Design and VLSI Implementation of 12-bit 75MHz pipelined ADC with open loop residue amplification', http://www. msrsas. org/docs/programme/2008/219%20Karthik%20thouti%20Reddy. pdf.
  26. Lin, T. T. , and Li, C. P. (2002) 'Smart antenna based interference-blocking RAKE receiver for CDMA systems over multipath fading channel'. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.
  27. Yang, W. , and Tan, Z. , (2003) 'A cumulant-based 2D-RAKE receiver for CDMA system over frequency-selective fading channels'. IEEE Vehicular Technology Conference.
  28. Yi-Jing Lin. , Shawn S. H. Hsu. , Jun-De Jin. , and Chan, C. Y. (2007) 'A 3. 1–10. 6 GHz Ultra-Wideband CMOS Low Noise Amplifier with Current-Reused Technique'. IEEE Microwave and Wireless Components Letters. 17(3).
  29. Batra, J. Balakrishnan, and A. Dabak, "Multi-band OFDM: a new approach for UWB," IEEE International Symposium on Circuits and Systems, vol. 5, pp. 365-368, May 2004.
Index Terms

Computer Science
Information Sciences

Keywords

I-UWB receiver pipelined ADC high speed CMOS gain boosting clock boot strapping