CFP last date
20 January 2025
Reseach Article

Numerical Study of Free Convection Flow past a Vertical Cone with Variable Heat and Mass Flux

by S. Gouse Mohiddin, O. Anwar Beg, S. Vijaya Kumar Varma
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 56 - Number 6
Year of Publication: 2012
Authors: S. Gouse Mohiddin, O. Anwar Beg, S. Vijaya Kumar Varma
10.5120/8896-2919

S. Gouse Mohiddin, O. Anwar Beg, S. Vijaya Kumar Varma . Numerical Study of Free Convection Flow past a Vertical Cone with Variable Heat and Mass Flux. International Journal of Computer Applications. 56, 6 ( October 2012), 24-31. DOI=10.5120/8896-2919

@article{ 10.5120/8896-2919,
author = { S. Gouse Mohiddin, O. Anwar Beg, S. Vijaya Kumar Varma },
title = { Numerical Study of Free Convection Flow past a Vertical Cone with Variable Heat and Mass Flux },
journal = { International Journal of Computer Applications },
issue_date = { October 2012 },
volume = { 56 },
number = { 6 },
month = { October },
year = { 2012 },
issn = { 0975-8887 },
pages = { 24-31 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume56/number6/8896-2919/ },
doi = { 10.5120/8896-2919 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:58:09.895406+05:30
%A S. Gouse Mohiddin
%A O. Anwar Beg
%A S. Vijaya Kumar Varma
%T Numerical Study of Free Convection Flow past a Vertical Cone with Variable Heat and Mass Flux
%J International Journal of Computer Applications
%@ 0975-8887
%V 56
%N 6
%P 24-31
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A numerical study of buoyancy-driven unsteady natural convection boundary layer flow past a vertical cone embedded in a non-Darcian isotropic porous regime with transverse magnetic field applied normal to the surface is considered. The heat and mass flux at the surface of the cone is modeled as a power-law according to and respectively, where x denotes the coordinate along the slant face of the cone. Both Darcian drag and Forchheimer quadratic porous impedance are incorporated into the two-dimensional viscous flow model. The transient boundary layer equations are then non-dimensionalized and solved by the Crank-Nicolson implicit difference method. The velocity, temperature and concentration fields have been studied for the effect of Grashof number, Darcy number, Forchheimer number, Prandtl number, surface heat flux power-law exponent (m), surface mass flux power-law exponent (n), Schmidt number, buoyancy ratio parameter and semi-vertical angle of the cone. Present results for selected variables for the purely fluid regime are compared with the published work and are found to be in excellent agreement. The local skin friction, Nusselt number and Sherwood number are also analyzed graphically. The study finds important applications in geophysical heat transfer, industrial manufacturing processes and hybrid solar energy systems.

References
  1. Ingham, D. B. , Pop, I. 2002. Transport Phenomena in Porous Media II, Pergamon, Oxford.
  2. Nield, D. A. , Bejan, A. 2006. Convection in Porous Media, 3rd edition, Springer, New York.
  3. Vafai, K. (Ed. ). 2005. Handbook of Porous Media, 2nd edition, CRC Press, Boca Raton.
  4. Trevisan, O. V. , Bejan, A. 1990. Combined heat and mass transfer by natural convection in a porous medium, Adv. Heat Transfer, 20 (1990) 315-352.
  5. Vafai, K. , Tien, C. L. 1981. Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat Mass Transfer, 24 (1981)195-203.
  6. Chen, C. H. , Chen, C. K. 1990. Non-Darcian mixed convection along a vertical plate embedded in a porous medium, Applied Mathematical Modelling, 14 (1990) 482-488.
  7. Hossain, M. A. , Paul, S. C. 2001. Free convection from a vertical permeable cone with non-uniform surface temperature, Acta Mechanica, 151 (2001) 103-114.
  8. Hossain, M. A. , Paul, S. C. 2001. Free convection from a vertical permeable circular cone with non-uniform surface heat flux, Heat Mass Transfer, 37 (2001) 167-173.
  9. Chamkha, A. J. , Khalid, A. R. A. , Al-Hawaj, O. 2000. Simultaneous Heat and Mass Transfer by Natural Convection from a Cone and a Wedge in Porous Media, J. Porous Media, 3 (2000) 155-164.
  10. Vajravelu, K. , Nayfeh, L. 1992. Hydromagnetic convection at a cone and a wedge, Int Commun Heat Mass Transfer, 19 (1992) 701–710.
  11. Muthucumaraswamy, R. , Ganesan, P. 1998. Unsteady flow past an impulsively started vertical plate with heat and mass transfer, Heat Mass Transf. , 34 (1998) 187-193.
  12. Gouse Mohiddin, S. 2011. Computational Fluid Dynamics, LAP Lambert Academic Publishing, Germany.
  13. Gouse Mohiddin, S. , Prasad, V. R. , Varma, S. V. K. , Anwar Bég, O. 2010. Numerical Study Of Unsteady Free Convective Heat And Mass Transfer In A Walters-B Viscoelastic Flow Along A Vertical Cone, Int. J. of Appl. Math. and Mech. , 6 (2010) 88-114.
  14. Bapuji Pullepu, Ekambavanan, K. , Chamkha, A. J. 2008. Unsteady laminar free convection from a vertical cone with uniform surface heat flux, Nonlinear Analysis: Modelling and Control. , 13 (2008) 47-60.
  15. Carnahan, B. , Luther, H. A. , Wilkes, J. O. 1969. Applied Numerical Methods, John Wiley and Sons, New York.
  16. Gebhart, B. , Jaluria, Y. , Mahajan, R. L. , Sammakia, B. 1998. Buoyancy – Induced flows and Transport, Hemisphere, New York
Index Terms

Computer Science
Information Sciences

Keywords

Cone Free convection Magnetohydrodynamic (MHD) flow non-Darcian porous media finite difference method heat mass flux