CFP last date
20 January 2025
Reseach Article

Classification of EMG Signals using Empirical Mode Decomposition

by Soona Shabani, Hossein Parsaei, Afshin Shaabany
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 56 - Number 18
Year of Publication: 2012
Authors: Soona Shabani, Hossein Parsaei, Afshin Shaabany
10.5120/9000-1117

Soona Shabani, Hossein Parsaei, Afshin Shaabany . Classification of EMG Signals using Empirical Mode Decomposition. International Journal of Computer Applications. 56, 18 ( October 2012), 23-28. DOI=10.5120/9000-1117

@article{ 10.5120/9000-1117,
author = { Soona Shabani, Hossein Parsaei, Afshin Shaabany },
title = { Classification of EMG Signals using Empirical Mode Decomposition },
journal = { International Journal of Computer Applications },
issue_date = { October 2012 },
volume = { 56 },
number = { 18 },
month = { October },
year = { 2012 },
issn = { 0975-8887 },
pages = { 23-28 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume56/number18/9000-1117/ },
doi = { 10.5120/9000-1117 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:59:11.473273+05:30
%A Soona Shabani
%A Hossein Parsaei
%A Afshin Shaabany
%T Classification of EMG Signals using Empirical Mode Decomposition
%J International Journal of Computer Applications
%@ 0975-8887
%V 56
%N 18
%P 23-28
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Discrimination of rehabilitation diseases based on electromyogram (EMG) signals is a hot topic among the biomedical society. Although many attempts have been made to obtain the informative features from the recorded EMG signals, specialists have still not satisfied with the achieved results. Therefore, this paper is aimed at introducing an effective way to enhance the classification rate among the three groups including: myopathy, neuropathy, and control simulated subjects. In this way, first, the empirical mode decomposition (EMD) is applied to the simulated signals in order to decompose each signal to its natural components. The resulted decomposed signal is used to classify these three groups. The achieved comparison results between the suggested method and other conventional method exhibit the superiority of our method in terms of classification accuracy among these groups. In addition, applying the paired T-test on the results supports the significance of our evolution (P<0. 05).

References
  1. Christodoulou, C. I. ; Pattichis, C. S. : unsupervised pattern classification for the classification of EMG signals, IEEE Transactions on Biomedical Engineering, 46, 169-178 (1999).
  2. Butchal, F. : An Introduction to EMG, Copenhagen, Gyldendal (1957).
  3. Pattichis, C. S. ; Elia, A. G. Autoregressive and cepstral analyses of motor unit action potentials, Med. Eng. Phys. , 21, 405-419 (1999).
  4. DeLuca C. J. : Towards understanding the EMG signal, 4th ed. , Baltimore: Williams &amp; Wilkinson (1978).
  5. Krarup C. : Pitfalls in electro diagnosis, J Neurophysiol, 81, 1115-1126 (1999).
  6. McGill K. C. : Optimal resolution of superimposed action potentials, IEEE Trans Biomed Engg. 49, 640-650 (2002).
  7. Pattichis, C. S. ; Pattichis, M. S. : Time-Scale Analysis of Motor Unit Action Potentials, IEEE Transactions on Biomedical Engineering, 46, 325-329 (1999).
  8. Stalberg, E. ; Andreassen, S,; Falck, B. ; Lang, H. ; Rosenfalck, A. Trojaborg, W. : Quantitative analysis of individual motor unit potentials: a proposition for standardized terminology and criteria for measurement, Journal of Clinical Neurophysiology, 3, 313-348 (1986).
  9. Buchthal, F. ; Guld, C. ; Rosenfalck, P. : Action Potential Parameters in Normal Human Muscle and their Dependence on physical variables, Acta Physiol Scand, 2, 200–218 (1954).
  10. Stashuk, D. ; Bruin, H. D. : Automatic decomposition of selective needle-detected my electric signals, IEEE Trans Biomed Eng, 35, 1–10 (1988).
  11. Chauvet, E. ; Fokapu, O. ; Hogrel, J. Y. ; Gamet, D. ; Duchêne, J. : Automatic identification of motor unit action potential trains from electromyographic signals using fuzzy techniques, Med. Biol. Eng. Comput. , 41, 646–653 (2003).
  12. Huang, N. E. ; Shen, Z. ; Long, S. R. ; Wu, M. L. ; Shih, H. H. ; Zheng, Q. ; Yen, N. C. ; Tung, C. C. ; Liu, H. H. : The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysi, Proc. Roy. Soc. London A. , 454, 903–995 (1998).
  13. Souza Neto, E. P. ; Custaud, M. A. ; Cejka, C. J. ; Abry, P. ; Frutoso, J. ; Gharib C. ; Flandrin, P. : Assessment of cardiovascular autonomic control by the Empirical Mode Decomposition, 4th Int. Workshop on Biosignal Interpretation, Como (I), 123-126 (2002).
  14. Wu, Z. ; Schneider, E. K. ; Hu Z. Z. ; Cao, L. : The impact of global warming on ENSO variability in climate records, COLA Technical Report, 110 (2001).
  15. Vapnik, V. : Statistical Learning Theory, Wiley, New York (1998).
  16. Cai, Y. ; Liu, X. ; Xu, X. : Prediction of protein structural classes by support vector machines, Comput. Chemi. ,26, 293-296 (2002).
  17. Reunanen, J. : Search Strategies. Feature Extraction Foundations and Applications Stud-Fuzz, 207, 119–136 2006.
  18. Drazin, P. G. : Nonlinear systems, Cambridge University Press (1992).
  19. Rilling, G. ; Flandrin P. ; Gonçalves P. : On Empirical Mode Decomposition and its algorithms, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado (I) (2003).
  20. Huang, N. E. ; Wu, M. i. C. ; Long, S. R. ; Shen, S. S. P. ; Qu, W. ; Gloersen, P. ; Fan, K. L. : A confidence limit for the Empirical Mode Decomposition and Hilbert spectral analysis, Proc. Royal Soc. London A, 459, 2317-2345 (2003).
  21. Huang, N. E. ; Shen, Z. ; Long, S. : A New View of Nonlinear Water Waves: The Hilbert Spectrum, Annu. Rev. Fluid Mech. , 31, 417–457 (1999).
  22. Deering R. ; Kaiser, J. F. : The use of a masking signal to improve empirical mode decomposition, ICASSP (2005).
  23. Flandrin, P. ; Rilling, G. ; Gonc¸ P. : Empirical mode decomposition as a filter bank, IEEE Sig. Proc. Lett. , 11, 112–114 (2004).
  24. Torkkola, K. : Information-Theoretic Methods, Feature Extraction Foundations and Applications StudFuzz, 207, 167–185 (2006).
  25. Nihal F. G. ; Sabri, J. F. : Classification of EMG Signals Using PCA and FFT, Journal of Medical Systems, 29, 241-250 (2005).
  26. Perez, M. A. ; Nussbaum, M. A. : Principal components analysis as an evaluation and classification tool for lower torso sEMG data, J. Biomech. 36, 1225–1229 (2003).
Index Terms

Computer Science
Information Sciences

Keywords

Classification Electromyogram (EMG) Empirical Mode Decomposition (EMD)