CFP last date
20 January 2025
Reseach Article

Probabilistic Defect Analysis Model for Quantum dot Cellular Automata Design at Analytical Phase

by Arijit Dey, Kunal Das, Debashis De, Mallika De
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 55 - Number 7
Year of Publication: 2012
Authors: Arijit Dey, Kunal Das, Debashis De, Mallika De
10.5120/8768-2693

Arijit Dey, Kunal Das, Debashis De, Mallika De . Probabilistic Defect Analysis Model for Quantum dot Cellular Automata Design at Analytical Phase. International Journal of Computer Applications. 55, 7 ( October 2012), 33-41. DOI=10.5120/8768-2693

@article{ 10.5120/8768-2693,
author = { Arijit Dey, Kunal Das, Debashis De, Mallika De },
title = { Probabilistic Defect Analysis Model for Quantum dot Cellular Automata Design at Analytical Phase },
journal = { International Journal of Computer Applications },
issue_date = { October 2012 },
volume = { 55 },
number = { 7 },
month = { October },
year = { 2012 },
issn = { 0975-8887 },
pages = { 33-41 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume55/number7/8768-2693/ },
doi = { 10.5120/8768-2693 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:56:39.848872+05:30
%A Arijit Dey
%A Kunal Das
%A Debashis De
%A Mallika De
%T Probabilistic Defect Analysis Model for Quantum dot Cellular Automata Design at Analytical Phase
%J International Journal of Computer Applications
%@ 0975-8887
%V 55
%N 7
%P 33-41
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The advantage of defect analysis on Quantum dot Cellular Automata(QCA) is that defects can be predict (which are probable to arise during fabrication phase) at analytical phase of QCA design. Since QCA is probabilistic in nature, the probability theory is introduced here to analyze the defect/fault tolerance at gate level of QCA design. We proposed a Bayesian network based Probabilistic Defect Analysis Model (PDAM) to analyze the defect at analytical phase of QCA design. Proposed model is applied over QCA wire, three input Majority voter, Five Input Majority voter and the result is compared with QCADesigner to justify the importance of PDAM approach over exhaustive simulation process with QCADesigner.

References
  1. C. S. Lent, P. D. Taugaw, W. Porod, and G. H. Bernstein (1993) Quantum dot cellular automata Nanotechnology. 4: 49-57.
  2. C. S. Lent, P. D. Tougaw and W. Porod(1993) Appl Phys Lett. 62:7-14.
  3. C. S. Lent, P. D. Taugaw (1996) Dynamic behavior of quantum cellular automata J. Appl. Phys. 80(8): 4722-4736.
  4. Amlani et. at. (1999) Experimental demonstration of electron switching in a quantum-dot cellular automata (QCA) cell Superlattices and Microstructures. 25(1-2): 273-278.
  5. M. Macucci et al. (2003) A QCA cell in Silicon on insulator technology: theory and experiment, Elsevier Superlattices and Microstructure. 34: 205-211.
  6. M. Momenzadeh, M. Ottavi, F. Lombardi (2005) Modeling QCA Defects at Molecular-level in Combinational Circuits, Proc. 20th IEEE International Symposium on DFT, pp. 208-216.
  7. J. Huang, M. Momenzadeh, L. Schiano and F. Lombardi, Simulation-based design of modular QCA circuits, Proc. of IEEE conference on nanotechnology, Nagoya, 2005.
  8. C. S. Lent, P. D. Taugaw, W. Porod, and G. H. Bernstein (1993) Quantum cellular automata, Proc. Nanotechnology. 4: 49-57.
  9. Momenzadeh, M. ; Jing Huang; Tahoori, M. B. ; Lombardi (Dec. 2005) Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation, Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans. 24:1881-1893.
  10. C. S. Lent et al (2002) Power gain and dissipation in quantum-dot- cellular automata, J. Appl. Phys. 91(2):823-831.
  11. K. Das and D. De (February & April 2011) A study on Diverse Nanostructure for Implementing Logic gate design for QCA, Int. Journal of Nanoscience, World Scientific. 10(1-2): 263-269.
  12. K. Das and D. De, A Novel approach of And-Or-Inverter (AOI) gate design for QCA, Proc. IEEE conf. CODEC-09. (14-16 Dec2009)ISBN 978-81-8465-152-2, pp. 1-4.
  13. K. Das, D. De (2010) Characterization, Test and Logic Synthesis of Novel Conservative & Reversible Logic Gates For QCA, Int. Journal of Nanoscience, World Scientific. 9(2): 1-14.
  14. K. Das, D. De, Novel Approach to Design A Testable Conservative Logic Gate for QCA Implementation. Proc. IEEE Intr. Conf. of IACC'2010. (19th Feb. -20th Feb. 2010), pp. 82-87.
  15. K. Das, D. De (2010) QCA Defect and Fault Analysis of Diverse Nanostructure for Implementing Logic Gate, Int. journal of Recent Trends in Engineering, Finland. 3(1):1-5.
  16. Kunal Das, Debashis De (2011) Characterization, applicability and defect analysis for tiles nanostructure of quantum dot cellular automata, Molecular Simulation, 37(3): 210 – 225.
  17. Huang et al. (6 June 2007) On the Tolerance to Manufacturing Defects in Molecular QCA Tiles for Processing-by-wire, Journal of Electronic Testing: Theory and Applications (JETTA). 23(2):163-174.
  18. Kunal Das, Debashis De, Mallika De " Tile Based Approach To Design Logic Circuit And It's Defects Analysis For Quantum Dot Cellular Automata ", In Quantum Dots and Quantum Cellular Automata: Recent Trends and Applications, Nova Science Publishers, Inc. , USA. [In press]
  19. M. B Thoori, J. Huang, M. Momenzadeh, and F. Lombardi (Dec. 2004) Testing of quantum Cell automata,IEEE Trans. Nanotechnol. 3(4): 432-442.
  20. X. Ma, J. Huang, C. Metra, F. Lombardi (Jan 2008) Reversible Gates and Testability of One Dimensional Arrays of Molecular QCA, Springer Journal of Electronic Testing. 24:1-3.
  21. Ma X. et al. (February 2009) Detecting multiple faults in one-dimensional arrays of reversible QCA gates, Journal of Electronic Testing: Theory and Applications (JETTA). 25(1):39-54.
  22. Ma X. et al. Testing reversible 1D arrays for molecular QCA, Proc. IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems. art. no. 4030917(2006), pp. 71-79.
  23. N. Jha and S. Gupta Testing of Digital system, . Cambridge, united kingdom; Cambridge university press. (2003).
  24. Tougaw, P. Douglas, Lent, Craig S (Feb 1994) Logical devices implemented using quantum cellular automata, Journal of Applied Physics. 75(3):1818-1825.
  25. J. Timler and C. S. lent (2002) power gain and dissipation in quantum dot cellular automata, J. of App. phy. 91(2): 823-831.
  26. I. Amlani, A. O. Orlov, G. Toth, C. S. Lent, G. H. Bernstein and G. L. Snider (1999) Digital logic gate using quantum-dot cellular automata, Applied Physics Letters. 74: 28-75.
  27. Fijany and B. N. Toomarian, New design for quantumdot cellular automata to obtain fault tolerant logic gates, Journal of Nanoparticle Res. 3(2001):27-37.
  28. S. Srivastava and S. Bhanja, "Bayesian Modeling of Quantum-Dot- Cellular-Automata Circuits," Proc. NSTI Nanotech Conf. (2005).
  29. S. Bhanja, K. Lingasubramanianand N. Ranganathan, "Estimation of Switching Activity in Sequential Circuits Using Dynamic Bayesian Networks," Proc. Int'l Conf. VLSI Design, 586-591 (2005).
  30. S. Srivastava, S. Sarkar, and S. Bhanja (June 2006) Power Dissipation Bounds and Models for Quantum-dot Cellular Automata Circuits, IEEE Conference on Nanotechnology. 1: 375–378.
  31. S. Bhanja and S. Sarkar (June 2006) Probabilistic Modeling of QCA Circuits Using Bayesian Networks, IEEE Conference on Nanotechnology, pp. 383–386,
  32. S. Srivastava and S. Bhanja (Feb 2007) Hierarchical Probabilistic Macromodeling for QCA Circuits," IEEE Transactions on Computers. 56: 174–190.
  33. S. Srivastava and S. Bhanja (June 2006) Bayesian Macromodeling for Circuit Level QCA Design, IEEE Conference on Nanotechnology. 1:pp. 31–34.
  34. S. Bhanja and S. Sarkar (Nov. 2006) Probabilistic Modeling of QCA Circuits Using Bayesian Networks, IEEE Transactions on Nanotechnology. 5: 657–670.
  35. K. Walus et. al. , 'ATIPSlaboratoryQCADesigner' ATIPS laboratory, University of Calgary, Canada, 2002. homepage- http://www. atips. ca/projects/qcadesigner
  36. Genie, http://genie. sis. pitt. edu/
Index Terms

Computer Science
Information Sciences

Keywords

Radius of effects Five Input Majority Voter Bayesian Network PDA Model Conditional probability