CFP last date
20 January 2025
Reseach Article

A New Class sc*g-Set Weaker Form of Closed Sets in Topological Spaces

by A. Pushpalatha, R. Nithyakala
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 55 - Number 4
Year of Publication: 2012
Authors: A. Pushpalatha, R. Nithyakala
10.5120/8744-2624

A. Pushpalatha, R. Nithyakala . A New Class sc*g-Set Weaker Form of Closed Sets in Topological Spaces. International Journal of Computer Applications. 55, 4 ( October 2012), 25-29. DOI=10.5120/8744-2624

@article{ 10.5120/8744-2624,
author = { A. Pushpalatha, R. Nithyakala },
title = { A New Class sc*g-Set Weaker Form of Closed Sets in Topological Spaces },
journal = { International Journal of Computer Applications },
issue_date = { October 2012 },
volume = { 55 },
number = { 4 },
month = { October },
year = { 2012 },
issn = { 0975-8887 },
pages = { 25-29 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume55/number4/8744-2624/ },
doi = { 10.5120/8744-2624 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:56:24.792798+05:30
%A A. Pushpalatha
%A R. Nithyakala
%T A New Class sc*g-Set Weaker Form of Closed Sets in Topological Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 55
%N 4
%P 25-29
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we have introduced a new classes of closed sets, as weaker forms of closed sets namely sc*g-closed sets and continuous functions in topological spaces.

References
  1. Levine , N. , Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly,70(1963),36-41.
  2. Levine , N. , Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970),89-96.
  3. Maki. , Devi, R. , and Balachandran, K. , Generalized ?-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
  4. Hatir, E. , Noiri, T. , and Yuksel, S. , A decomposition of continuity, ActaMath. Hungar. ,70(1996),145-150.
  5. Rajamani, M. , Studies on decompositions of generalized continuous maps in topological spaces, Ph. D Thesis, Bharathiar University, Coimbatore,(2001).
  6. Sundaram, P. , Studies on generalizations of continuous maps in topological spaces, Ph. D Thesis, Bharathiar University, Coimbatore,(1991).
  7. Sundaram, P. , On C-continuous maps in topological spaces, Proc. of 82nd session of the Indian Science Congress, Calcutta (1995),48-49.
  8. Tong, J. , On decomposition of continuity in topological spaces, ActaMath. Hungar. ,54(1989),51-55.
  9. Bhattachraya and Lahiri, B. K. , Semi-generalized closed sets in topology, Indian J. Math. , 29(3)375-382(1987)
  10. Nagaveni, N. , Studies on Generalizations of Homeomorphisms in Topological spaces, Ph. D Thesis, Bharathiar University, Coimbatore,(1999).
  11. Andrijevic,D. , Semi-preopen sets, Mat. Vesnik,38(1986),24-32.
  12. Dontchev, J. , On generalizing semi-pre open sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. , 16(1995), 35-48.
  13. Nithyakala, R. , scg, sc*g, sc(s)g-closed sets in Topological spaces, Proc. Of 99th Indian Science Congress, Bhubaneswar(2012), 89.
  14. Balachandran, K. , Sundaram, P. , and Maki, H. , On generalized continuous maps in Topological spaces, Mem. Fac. Kochi Univ. Ser. A. Math. , 12(1991), 5-13.
  15. Maki, H. , Devi, R. , and Balachandran, K. , Associated topologies of generalized ?-closed sets and ?- generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. , 15 (1994), 51-63.
  16. Crossley, S. G. , and Hildebrand, S. K. , Semi-closure, Texas J. Sci. , 22 (1971), 99-112.
  17. Malghan, S. R. , Generalized closed maps, J. Karnataka Univ. Sci. , 27(1982), 82-88.
  18. Biswas, N. , On some mappings in topological spaces, Bull. Cal. Math. Soc. , 61(1969), 127-135.
  19. Crossley, S. G. , and Hildebrand, S. K. , Semi-topological properties, Fund. Math. , 74(1972), 233-254.
  20. Gentry, K. R. and Hoyle, H. G. , Somewhat continuous functions, Czechoslovak Math. J. ,(1971), 5-12.
Index Terms

Computer Science
Information Sciences

Keywords

scg-closed scg- continuous functions