CFP last date
20 December 2024
Reseach Article

Video Segmentation using 2D+time Mumford-Shah Functional

by Mohamed El Aallaoui, Abdelwahad Gourch
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 55 - Number 3
Year of Publication: 2012
Authors: Mohamed El Aallaoui, Abdelwahad Gourch
10.5120/8734-2748

Mohamed El Aallaoui, Abdelwahad Gourch . Video Segmentation using 2D+time Mumford-Shah Functional. International Journal of Computer Applications. 55, 3 ( October 2012), 15-19. DOI=10.5120/8734-2748

@article{ 10.5120/8734-2748,
author = { Mohamed El Aallaoui, Abdelwahad Gourch },
title = { Video Segmentation using 2D+time Mumford-Shah Functional },
journal = { International Journal of Computer Applications },
issue_date = { October 2012 },
volume = { 55 },
number = { 3 },
month = { October },
year = { 2012 },
issn = { 0975-8887 },
pages = { 15-19 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume55/number3/8734-2748/ },
doi = { 10.5120/8734-2748 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:56:18.201841+05:30
%A Mohamed El Aallaoui
%A Abdelwahad Gourch
%T Video Segmentation using 2D+time Mumford-Shah Functional
%J International Journal of Computer Applications
%@ 0975-8887
%V 55
%N 3
%P 15-19
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

this paper describes a new video segmentation method obtained by minimizing an extension of Mumford-Shah functional used for 2D+time partitions. This extension permits to write the Mumford- Shah functional as an amultiscale energy, which is minimized on a 2D+time persistent hierarchy. The building of this hierarchy based on connected components of spatio-temporal regions.

References
  1. H. Winnemoller, S. C. Olsen, and B. Gooch. Real-time video abstraction. ACM Transactions on Graphics Proc. of the ACM SIGGRAPH conf, 25:1221–1226, July 2006.
  2. J. Chen, S. Paris, and F. Durand. Real-time edge-aware image processing with the bilateral grid. ACM Transactions on Graphics Proc. of the ACM SIGGRAPH conf, 26:103, July 2007.
  3. Y. Wang, K. F Loe, T. Tan, and J-K. Wu. Spatiotempo-ral video segmentation based on graphical models. IEEE transactions on image processing, 14:937–947, July 2005.
  4. J. P Collomosse, D. Rowntree, and P. M Hall. Stroke surfaces: Temporally coherent artistic animations from video. IEEE Transactions on Visualization and Computer Graphics, 11:540–549, 2005.
  5. W. Brendel and S. Todorovic. Video object segmentation by tracking regions. IEEE 12th International Conference on Computer Vision, pages 833–840, 2009.
  6. D. Comaniciu and P. Meer. A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis Machine Intelligence, 24:603–619, 2002.
  7. A. W. Klein, P. J. Sloan, A. Finkelstein, and M. F. Cohen. Stylized video cubes. pages 15–22.
  8. J. Wang, B. Thiesson, Y. Xu, and M. Cohen. Image and video segmentation by anisotropic kernel mean shift. in Proc. 8th European Conference on Computer Vision, Prague, Czech Republic, 2:238–249, May 2004.
  9. D. DeMenthon and R. Megret. Spatio-temporal segmentation of video by hierarchical mean shift analysis. Technical Report: LAMP-TR-090/CAR-TR-978/CSTR- 4388/UMIACS-TR-2002-68, University of Maryland, College Park, 2002.
  10. S. Paris and F. Durand. A topological approach to hierarchical segmentation using mean shift. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, pages 1–8, June 2007.
  11. T. Wang, J. -Y. Guillemaut, and J. Collomosse. Multi-label propagation for coherent video segmentation and artistic stylization. 17th IEEE International Conference on Image Processing (ICIP), pages 3005–3008, September 2010.
  12. H. Greenspan, J. Goldberger, and A. Mayer. A probabilistic framework for spatio-temporal video representation. CCV '02 Proceedings of the 7th European Conference on Computer Vision-Part IV, pages 461–475, 2002.
  13. D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42:577–686, 1989.
  14. L. Vese and T. Chan. A mumtiphase level set framework for image segmentation using the mumford and shah model. Inter. J. Computer Vision, 50:271–293, 2002.
  15. L. Guigues. Modles multi-chelles pour la segmentation d'images. PhD thesis, Cergy-Pontoise University, 2003.
  16. L. I. Muoz. Image segmentation and compression using the tree of shapes of an image. motion estimation. PhD thesis, Pompeu Fabra University, Barcelona, 2005.
  17. C. Ballester V. Caselles and P. Monasse. The tree of shapes of an image. SAIM: Control, Optimization and Calculus of Variations, 9:1–18, 2003.
  18. P. Monasse. Morphological representation of digital images and application to registration. PhD thesis, Universit Paris IX-Dauphine, June 2000.
  19. D. G. LOWE. Object recognition from local scale-invariant features. ICCV '99 Proceedings of the International Conference on Computer Vision, 2:1150–1157, 1999.
  20. D. G. LOWE. Distinctive image features from scaleinvariant keypoints. International Journal of Computer vision, 60:91–110, November 2004.
  21. M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph-based video segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, USA, June 2010.
  22. S. Paris. Edge-preserving smoothing and mean-shift segmentation of video streams. ECCV '08 Proceedings of the 10th European Conference on Computer Vision: Part II, pages 460–473, 2008.
Index Terms

Computer Science
Information Sciences

Keywords

Video segmentation 2D+time Mumford-Shah functional amultiscale energy hierarchy 2D-shapes