CFP last date
20 January 2025
Reseach Article

Soft Computing based Model for Identification of Pseudoknots in RNA Sequence using Learning Grammar

by Ankita Jiwan, Shailendra Singh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 54 - Number 9
Year of Publication: 2012
Authors: Ankita Jiwan, Shailendra Singh
10.5120/8591-2344

Ankita Jiwan, Shailendra Singh . Soft Computing based Model for Identification of Pseudoknots in RNA Sequence using Learning Grammar. International Journal of Computer Applications. 54, 9 ( September 2012), 1-7. DOI=10.5120/8591-2344

@article{ 10.5120/8591-2344,
author = { Ankita Jiwan, Shailendra Singh },
title = { Soft Computing based Model for Identification of Pseudoknots in RNA Sequence using Learning Grammar },
journal = { International Journal of Computer Applications },
issue_date = { September 2012 },
volume = { 54 },
number = { 9 },
month = { September },
year = { 2012 },
issn = { 0975-8887 },
pages = { 1-7 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume54/number9/8591-2344/ },
doi = { 10.5120/8591-2344 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:55:13.239538+05:30
%A Ankita Jiwan
%A Shailendra Singh
%T Soft Computing based Model for Identification of Pseudoknots in RNA Sequence using Learning Grammar
%J International Journal of Computer Applications
%@ 0975-8887
%V 54
%N 9
%P 1-7
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

RNA structure prediction is one of the major topics in bioinformatics. Among the various RNA structures, pseudoknots are the most complex and unique structure. Various methods have been used for modeling RNA pseudoknotted secondary structure. In this paper a new model for prediction of RNA pseudoknot structure has been proposed. In this model, features of two existing techniques, i. e. neural network and grammar are combined. The advantage of grammar, identification based on rules is combined with the strength of a neural network to learn. An Elman neural network is used to learn the context free grammar that represents a pseudoknot. This Learning grammar network further identifies if the RNA sequence contains pseudoknot or not. Learning grammar helps in reducing the drawbacks of both neural network and grammar thus increasing the overall power of identifying sequences with pseudoknots.

References
  1. Yuki Kato, Hiroyuki Seki, Tadao Kasami. RNA Pseudoknotted Structure Prediction Using Stochastic Multiple Context Free Grammar, IPSJ Digital Courier, 2006, 2:655-664.
  2. Rabindra Ku. Jena, Musbah M. Aqel, Pankaj Srivastava, Prabhat K. Mahanti. Soft Computing Methodologies in Bioinformatics, European Journal of Scientific Research, 2009, 26(2):189-203.
  3. B. A. Deiman, C. W. Pleij. Pseudoknots: A Vital Feature In Viral RNA, Seminars in Virology, 1997, 8(3):166-175.
  4. E. A. Rodland. Pseudoknots in RNA Secondary Structures: Representation, Enumeration, and Prevalence, Journal of Computational Biology, 2006, 13(6):1197-1213.
  5. Campbell, Mitchell, Reece. Biology Concepts and Connections, Second Edition, Addison Wesley, 1997
  6. D. W. Staple, S. E. Butcher, Pseudoknots: RNA Structures with Diverse Functions, PLoS Biology, 2005, 3(6).
  7. Thomas K. F. Wong, Y. S. Chiu, T. W. Lam, S. M. Yiu. Memory Efficient Algorithms For Structural Alignment of RNAs With Pseudoknots, IEEE Transactions On Computational Biology And Bioinformatics, 2007.
  8. R. M. Dirks and N. A. Pierce. A Partition Function Algorithm For Nucleic Acid Secondary Structure Including Pseudoknots, Journal of Computational Chemistry, 2003, 24(13):1664-1677.
  9. C. W. A. Pleij, K. Rietveld, L. Bosch. A New Principle of RNA Folding Based On Pseudoknotting, Nucleic Acids Research, 1985, 13(5):1717-1731.
  10. E. Rivas, S. Eddy. A Dynamic Programming Algorithm for RNA Structure Prediction Including Pseudoknots, Journal of Molecular Biology, 1999, 2053-2068.
  11. Han B, Dost B, Bafna V, Zhang S. Structural Alignment of Pseudoknotted RNA, Journal of Computational Biology, 2008, 15(5):489-504.
  12. Herbert H. Tsang, Kay C. . Wiese. SARNA-Predict-PK: Predicting RNA Secondary Structures Including Pseudoknots, IEEE, 2008.
  13. Liming Cai, L. Russell Malmberg, Yunzhou Wu. . Stochastic Modeling of RNA Pseudoknotted Structure A Gramatical Approach, Bioinformatics, 2003, 19:66-73.
  14. Ankita Jiwan, Shailendra Singh. A Review on RNA Pseudoknot Structure Prediction Techniques, International Conference on Computing, Electronics and Electrical Technologies [ICCEET], IEEE sponsored, 2012, 975-978.
  15. Nobuyoshi Mizoguchi, Yuki Kato, Hiroyuki Seki. A Grammar-Based Approach to RNA Pseudoknotted Structure Prediction, IEEE, 2011, 135-140.
  16. Q. Liu, X. Ye, Y. Zhang. A Hopfield Neural Network Based Algorithm For RNA Secondary Structure Prediction, Proc. of the First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06), 2006, 1-7.
  17. Anne Condon, Beth Davy, Baharak Rastegari, Shelly Zhao, Finbarr Tarrant. Classifying RNA Pseudoknotted Structures, Theoretical Computer Science, 2004, 320(1) :35-50.
  18. Rafael García. Prediction of RNA Pseudoknotted Secondary Structure using Stochastic Context Free Grammars (SCFG), CLEI Electronic Journal, 2006.
  19. Shubhra Sankar Ray, Munia Bachhar, Sankar K. Pall. RNA Secondary Structure Prediction in Soft Computing Framework: A Review, IEEE, 2010.
  20. Denise R Koessler, Debra J Knisley, Jeff Knisley, Teresa Haynes. A Predictive Model For Secondary RNA Structure Using Graph Theory And A Neural Network, BMC Bioinformatics, 2010.
  21. Cathy H. Wu. Artificial Neural Networks for Molecular Sequence Analysis, Computers Chem. , 1997, 21(4):231-256.
  22. Yang Liu Maozu Guo Quan Zou, Tuo Zhao. Predicting RNA Secondary Structure Based on The Class Information And Hopfield Network, Computers in Biology and Medicine, 2009, 39(3):206-214.
  23. Yasuo Uemura, Aki Hasegawa, Satoshi Kobayashi, Takashi Yokomori. Tree Adjoining Grammars For RNA Structure Prediction, Theoretical Computer Science, 1999.
  24. Yuki Kato, Hiroyuki Seki, Tadao Kasami. Subclasses of Tree Adjoining Grammar for RNA Secondary Structure, Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms, 2004.
  25. Timo Koskela, Mikko Lehtokangas, Jukka Saarinen, Kimmo Kaski. Time Series Prediction with Multilayer Perceptron, FIR and Elman Neural Networks, Proceedings of the 1996 World Congress on Neural Networks by International Neural Network Society
  26. B. de Vries, J. Principe The gamma model: A new neural net model for temporal processing, Neural Networks, 1992, 5:565-576.
  27. S. Haykin. Neural networks: A comprehensive foundation, Macmillan College Publishing Company, New York, 1994.
  28. Sergio Roa, Fernando Nino. Classi?cation of Natural Language Sentences using Neural Networks, FLAIRS, 2003.
  29. J. Elman. Distributed Representations. Simple Recurrent Networks, and Grammatical Structure, Machine Learning, 1991.
  30. S. Haykin. Neural Networks: A Comprehensive Foundation, Upper Saddle River, N. J. : Prentice Hall, 1999.
  31. F. Pereira, Y. Shabes. Inside-Outside Re- Estimation from Partially Bracketed Corpora. In Proceedings of the 30th Annual Meeting of the Association for Computational Linguistics, 1992.
Index Terms

Computer Science
Information Sciences

Keywords

Minimum Free Energy Pseudoknots Soft Computing Elman Neural Network Grammar Context Free Grammar