We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

A Class of Non Invertible Matrices in GF(2) for Practical One Way Hash Algorithm

by Artan Berisha, Behar Baxhaku, Artan Alidema
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 54 - Number 18
Year of Publication: 2012
Authors: Artan Berisha, Behar Baxhaku, Artan Alidema
10.5120/8667-2574

Artan Berisha, Behar Baxhaku, Artan Alidema . A Class of Non Invertible Matrices in GF(2) for Practical One Way Hash Algorithm. International Journal of Computer Applications. 54, 18 ( September 2012), 19-20. DOI=10.5120/8667-2574

@article{ 10.5120/8667-2574,
author = { Artan Berisha, Behar Baxhaku, Artan Alidema },
title = { A Class of Non Invertible Matrices in GF(2) for Practical One Way Hash Algorithm },
journal = { International Journal of Computer Applications },
issue_date = { September 2012 },
volume = { 54 },
number = { 18 },
month = { September },
year = { 2012 },
issn = { 0975-8887 },
pages = { 19-20 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume54/number18/8667-2574/ },
doi = { 10.5120/8667-2574 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:56:01.678583+05:30
%A Artan Berisha
%A Behar Baxhaku
%A Artan Alidema
%T A Class of Non Invertible Matrices in GF(2) for Practical One Way Hash Algorithm
%J International Journal of Computer Applications
%@ 0975-8887
%V 54
%N 18
%P 19-20
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we describe non invertible matrix in GF(2) which can be used as multiplication matrix in Hill Cipher technique for one way hash algorithm. The matrices proposed are permutation matrices with exactly one entry 1 in each row and each column and 0 elsewhere. Such matrices represent a permutation of m elements. Since the invention, Hill cipher algorithm was used for symmetric encryption, where the multiplication matrix is the key. The Hill cipher requires the inverse of the matrix to recover the plaintext from cipher text. We propose a class of matrices in GF(2) which are non invertible and easy to generate.

References
  1. Zhang, Fuzhen. Matrix Theory. s. l. : Springer, 2011.
  2. Thoma H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction To Algorithms. s. l. : MIT Press, 2001.
  3. Knuth, Donald. The Art Of Computer Programming. Boston : Addison-Wesley, 1998. 0-201-89684.
  4. Fisher, R. A, Yates, F. Statistical tables for biological, agricultural and medical research. London : Oliver&Boyd, 1938. 0-02-844720-4.
  5. A Practical One Way Hash Algorithm based on Matrix Multiplication. Mohammed Abu Taha, Mousa Farajallah, Radwan Tahboub. s. l. : International Journal of Computer Applications, June, 2011, Vol. e 23-No. 2. 0975-8887.
  6. Shuffle an array or a list - Algorithm in Java. [Web site] 2009. http://www. vogella. com/articles/JavaAlgorithmsShuffle/article. html.
  7. Bishop, Davis. Intoduction to Cryptography with Java Applets. Sudbury : Jones and Bartlett, 2003. 0-7637-2207-3.
  8. History of Cryptography. [Web site] http://en. wikipedia. org/wiki/History_of_cryptography.
  9. Schneir, Bruce. Applied Cryptography Protocols, Algorithms and Source code in C. s. l. : John Wiley & Sons, 1996. 0471128457.
  10. Forouzan, Behrouz. Cryptography and Network Security. s. l. : McGraw Hill, 2008.
  11. One-Way Encryption and Message Authentication. Mittmann, Johannes. 2005.
  12. Hill Ciphers and Modular Linear Algebra. Eisenberg, Murray. 1999.
  13. A Composition Theorem for Universal One-Way Hash Functions. Shoup, Victor. s. l. : IBM Zurich Research Lab.
  14. Cryptography and Network Security Principles and Practices. Stallings, William. s. l. : Prentice Hall, 2006. 0-13-187316-4.
  15. RSA Laboratories. Hash Functions. [Web site] August 2012. http://www. rsa. com/rsalabs/node. asp?id=2176.
  16. Some Class of Invertible Matrices in GF(2). James S. Plank, Adam L. Buchsbaum. s. l. : University of Tennessee, 2007.
  17. Design of a robust cryptosystem algorithm for non invertible matrices based on Hill cipher. Rushdi A. Hamamreh, Mousa Farajallah. 05, s. l. : International Journal of Computer Science and Network Security, 2009, Vol. i 9.
Index Terms

Computer Science
Information Sciences

Keywords

Hill cipher technique Non-invertible matrix Galois field GF(2) hash algorithm One-way hash function plaintext integrity