CFP last date
20 January 2025
Reseach Article

Parallel Hermite Interpolation on Extended Fibonacci Cubes

by B. N. B. Ray, Alok Ranjan Tripathy, S. P. Mohanty
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 54 - Number 17
Year of Publication: 2012
Authors: B. N. B. Ray, Alok Ranjan Tripathy, S. P. Mohanty
10.5120/8661-2534

B. N. B. Ray, Alok Ranjan Tripathy, S. P. Mohanty . Parallel Hermite Interpolation on Extended Fibonacci Cubes. International Journal of Computer Applications. 54, 17 ( September 2012), 36-41. DOI=10.5120/8661-2534

@article{ 10.5120/8661-2534,
author = { B. N. B. Ray, Alok Ranjan Tripathy, S. P. Mohanty },
title = { Parallel Hermite Interpolation on Extended Fibonacci Cubes },
journal = { International Journal of Computer Applications },
issue_date = { September 2012 },
volume = { 54 },
number = { 17 },
month = { September },
year = { 2012 },
issn = { 0975-8887 },
pages = { 36-41 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume54/number17/8661-2534/ },
doi = { 10.5120/8661-2534 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:55:58.419384+05:30
%A B. N. B. Ray
%A Alok Ranjan Tripathy
%A S. P. Mohanty
%T Parallel Hermite Interpolation on Extended Fibonacci Cubes
%J International Journal of Computer Applications
%@ 0975-8887
%V 54
%N 17
%P 36-41
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This work suggests a parallel algorithm for Hermite interpolation on Extended Fibonacci Cube EFC1(n). The proposed algorithm has 3 phases: initialization, main and final. The main phase of the algorithm involves 2N+3 multiplications, N additions, 2N subtractions and N divisions. In final phase we propose an efficient algorithm to accumulate the partial sums of Hermite interpolation in O(log2N)≤n-2 steps as oppose to the earlier algorithm in the literature that involves n-2 steps, where N is the number of nodes, n the degree of EFC1(n).

References
  1. D. Kincaid, W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3rd Edition, Brooks/Cole Publisher, 2001.
  2. G. Lorentz, K. Jetter, S. D. Riemanschneider, Birkhoff Interpolation, Addison-Wesley, 1983.
  3. Hsu, W. J. , "Fibonacci Cubes-A New Interconnection Topology," IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 1, pp. 3-12, Jan. 1993
  4. Ioana Zelina: Parallel Lagrange Interpolation on Extended Fibonacci Cube. STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume L, Number 1, pp. 105-110, 2005
  5. Jain M. K. , Iyengar S. R. K. , Jain R. K. , "Numerical Methods for Scientific and Engineering Computation" 3e, Wiley Eastern Limited.
  6. Larijani, E. ; Sarbazi-Azad, H. : Parallel hermite interpolation on the pyramid, iscis 2007. 22nd international symposium on Digital Object Identifier, Computer and information sciences, 2007. pp. 1-5, 2007
  7. Sarbazi-Azad, H. , Ould-Khaoma, M. , Mackenzie, L. M. , Parallel Lagrange Interpolation on the Star Graph, Proc. 14th IPDPS, Cancun, Mexico, pp. 777, 2000
  8. Wu, J. , "Extended Fibonacci Cubes", IEEE Trans. on Parallel and Distributed Systems, vol. 8, no. 12, pp. 1203-1210, 1997
Index Terms

Computer Science
Information Sciences

Keywords

Hermite Interpolation Extended Fibonacci Cubes Parallel algorithm