CFP last date
20 December 2024
Reseach Article

Off-line Recognition of Persian Handwritten Digits using Statistical Concepts

by Omid Rashnoodi, Asghar Rashnoodi, Aref Rashnoodi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 53 - Number 8
Year of Publication: 2012
Authors: Omid Rashnoodi, Asghar Rashnoodi, Aref Rashnoodi
10.5120/8441-2225

Omid Rashnoodi, Asghar Rashnoodi, Aref Rashnoodi . Off-line Recognition of Persian Handwritten Digits using Statistical Concepts. International Journal of Computer Applications. 53, 8 ( September 2012), 20-28. DOI=10.5120/8441-2225

@article{ 10.5120/8441-2225,
author = { Omid Rashnoodi, Asghar Rashnoodi, Aref Rashnoodi },
title = { Off-line Recognition of Persian Handwritten Digits using Statistical Concepts },
journal = { International Journal of Computer Applications },
issue_date = { September 2012 },
volume = { 53 },
number = { 8 },
month = { September },
year = { 2012 },
issn = { 0975-8887 },
pages = { 20-28 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume53/number8/8441-2225/ },
doi = { 10.5120/8441-2225 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:53:35.849952+05:30
%A Omid Rashnoodi
%A Asghar Rashnoodi
%A Aref Rashnoodi
%T Off-line Recognition of Persian Handwritten Digits using Statistical Concepts
%J International Journal of Computer Applications
%@ 0975-8887
%V 53
%N 8
%P 20-28
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper a novel method for recognition of Persian handwritten digits is proposed. This approach uses central moments, Covariance, Median and Variance that are obtained at each the box digit image as the features set. The features set consist of 140 dimensions for each instance. In the classification phase of our proposed method the support vector machines, K-Nearest Neighbor and Sequential Minimal Optimization separately are employed. In this paper is used the principal components analysis (PCA) to reduce dimension features set. the performance of these three classifiers is observed on this application in terms of the correct classification and misclassification and how the performance of K-Nearest Neighbor classifier can be improved by varying the value of k. To evaluate our proposed scheme a database of Persian handwritten digits consist of 1699 handwritten digit images is used. In the best case proposed scheme using SMO classifiers yields a recognition rate of 92. 3875% for handwritten Farsi numerals.

References
  1. C. L. Liu, K. Nakashima, H. Sako, and H. Fujisawa, 2003. Handwritten digit recognition: benchmarking of state-of-the-art techniques, Pattern Recognition 36, 2271 – 2285.
  2. O. D. Trier, A. K. Jain, T. Taxt, 1996. Feature extraction methods for character recognition—a survey, Pattern Recognition Vol. 29, No. 4,641- 662.
  3. Ho TK, Hull JJ, Srihari SN, 1994. Decision combination in multiple classifier systems. IEEE Trans Pattern Anal Mach Intell Vol. 16, No. 1, 66 – 75.
  4. Xu L, Krzyzak A, Suen CY, 1991. Associative switch for combining multiple classifiers. In: Int. Joint Conf. on Neural Networks, Vol. 1. pp 43– 48.
  5. Suen CY, Nadal C, Mai TA, Legault R, Lam L, 1990. Recognition of totally unconstrained handwritten numerals based on the concept of multiple experts. In: Proc. IWFHR, 131-143.
  6. Cheng-Lin Liu, Ching Y. Suen, 2008. A new benchmark on the recognition of handwritten Bangla and Farsi numeral characters, Pattern Recognition.
  7. Hassan Soltanzadeh, Mohammad Rahmati, 2004. Recognition of Persian handwritten digits using image profiles of multiple orientations, Pattern Recognition Letters 25, 1569 –1576.
  8. A. Amin, 1998. Off-line Arabic character recognition: the state of the art, Pattern Recognition 31, 517–530.
  9. C. Y. Suen, S. Izadinia, J. Sadri, F. Solimanpour, 2006. Farsi script recognition: a survey, in: Proceedings of the Summit on Arabic and Chinese Handwriting Recognition, University of Maryland, College Park, MD, 101–110.
  10. Fevzi Alimoglu, Ethem Alpaydin, 2001. "Combining Multiple Representations for Pen-based Handwritten Digit Recognition," Turk J. Elec. Eng. , Vol. 9, No. 1.
  11. L. Xu, A. Krzyzak, C. Y. Suen, 1992. Methods of combining multiple classifiers and their application to handwriting recognition, IEEE Trans. Systems Man Cybernet. Vol. 22, 418-435.
  12. A. F. R. Rahman, M. C. Fairhurst, 2003. Multiple classifier decision combination strategies for character recognition: A review, International Journal on Document Analysis and Recognition, 166–194.
  13. A. Goltsev, D. Rachkovskij, 2005. Combination of the assembly neural network with a preceptor for recognition of handwritten digits arranged in numeral strings, Pattern Recognition 38, 315 – 322.
  14. S. Haykin, 1998. Neural Networks-A Comprehensive Foundation, second ed. , Prentice-Hall.
  15. K. Woods, W. P. Kegelmeyer, K. Bowyer, 1997. Combination of multiple classifiers using local accuracy estimates, IEEE Trans. Pattern Anal. Mach. Intel, Vol. 19, 405-410.
  16. R. A. Jacobs, M. I. Jordan, S. J. Nowlan, G. E. Hinton, 1991. Adaptive mixtures of local experts, Neural Comput. Vol. 3, 79-87.
  17. L. A. Rastrigin, R. H. Erenstein, 1982. Method of Collective Recognition, Energoizdat, Moscow.
  18. E. Alpaydin, M. I. Jordan, 1996. Local linear perceptrons for classification, IEEE Trans. Neural Networks ,Vol. 7, No. 3 , 788-792 .
  19. L. I. Kuncheva, 2004. "Combining Pattern Classifiers: Methods and algorithms," published by John Wiley & Sons. Inc.
  20. L. Rokach, 2010. "Ensemble-based classifiers," Artif Intelligent Rev, Vol. 33, 1–39.
  21. H. Aljuaid, Z. Muhammad and et al, 2010. "A Tool to Develop Arabic Handwriting Recognition System Using Genetic Approach," Journal of Computer Science No. 6, Vol. 6, 619-624.
  22. N. Ahmad, T. Natarjan, and K,Roa, 1974. "Discrete Cosine Transform," IEEE. Trans Compute. , Vol. C-23, 90-93.
  23. H. Choi, S. J. Cho, and J. H. Kim, 2003. "Generation of Handwritten Characters with Bayesian network based On-line Handwriting Recognizers," Proceedings of the Seventh International Conference on Document Analysis and Recognition.
  24. F. ch Li and F. Guan, 2009. 'Heuristic Model Research on Decision Tree Algorithm'. Intelligent Interaction and Affective Computing, 2009. ASIA '09. International Asia Symposium on 149 – 152.
  25. DS. Lee and SN. Srihari, 1995. "A theory of classifier combination: the neural network approach. " Proceedings of the third international conference on document analysis and recognition, Montreal, Canada, 42–5.
  26. G. Giacinto, F. Roli, and L, Bruzzone, 2000. "Combination of neural and statistical algorithms for supervised classification of remote-sensing images," Pattern Recognition Letters, Vol. 21, 385-397.
  27. CJC. Burges, 1998. "A tutorial on support vector machines for pattern recognition," Know Disc Data Min, Vol. 2, 1– 43.
  28. G. M. FUNG, 2005. "Multi category Proximal Support Vector Machine Classifiers," Machine Learning, Vol. 59, 77–97.
  29. M. H. Shirali-shareza, K. Faez, A. Khoanzad, 1994. "recognition of handwritten Farsi numerals by Zernike moments features and a set of class specific neural network classifiers", proceeding of the international conference of signal processing applications, and technology, Vol. 2, 998-1003.
  30. M. H. Shirali-shareza, K. Faez, A. Khoanzad, 1995. "Recognition of handwritten Persian/Arabic numerals by shadow coding and an edited probabilistic neural network", proccedings of international conference of image processing, vol. 3, Washington D. C.
  31. J. C. Platt, 1999. Fast training of support vector machines using Sequential minimal optimization, in: B. Scholkopf, C. J. C. Burges, A. J. Smola (Eds. ), Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, MA, 185–208.
  32. O. L. Mangasarian, D. R. Musicant, 1999. Successive over relaxation for support vector machines, IEEE Trans. Neural Networks, Vol. 10, No. 5, 1032–1037.
  33. C. L. Liu, K. Nakashima, H. Sako, H. Fujisawa, 2004. Handwritten digit recognition: investigation of normalization and feature extraction techniques, Pattern Recognition Vol. 37, No. 2, 265 – 279.
  34. C. Y. Suen, C. Nadal, R. Legault, T. A. Mai, L. Lam, 1992. Computer recognition of unconstrained handwritten numerals, Proc. IEEE,Vol. 80 ,No. 7 ,1162 – 1180.
  35. A. Broumandnia and M. Fathi, 2005. "Application of pattern recognition for Farsi license plate recognition," ICGST- GVIP Journal, Vol. 5.
  36. Smith, Lindsay I, Feb 2002. "A Tutorial on Principal Components Analysis".
  37. Ronald Fagin, 1998. "Fuzzy Queries in Multimedia Database Systems", ACM PODS.
  38. S. Abe, 2005. Support vector machines for pattern recognition, Springer Verlog London limited.
  39. Turk, M. and Pent land, A. : Eigen faces for Recognition. J. Cognitive Neurosis. Vol. 3, No. 1, 71-86, 1991.
  40. Martinez A, Kak A, PCA versus LDA. , 2001. IEEE Trans Pattern Anal Mach Intell Vol. 23, No. 2, 228-233.
  41. Athitsos, V. , Alon, J. , Sclaroff, and S. 2005. Efficient nearest neighbor classification using a cascade of approximate similarity measures. In: CVPR '05. IEEE Computer Society, Washington, DC, USA, 486–493.
  42. Athitsos, V. , Sclaroff, S. , 2005. Boosting nearest neighbor classifiers for multiclass recognition. In: CVPR '05, IEEE Computer Society, Washington, DC, USA.
  43. Cover, T. , Hart, P. , 1967. Nearest neighbor pattern classification. IEEE Transactions on Information Theory Vol. 13, No. 1, 21–27.
  44. Peng, J. , Heisterkamp, D. R. , Dai, H. K. : LDA/SVM driven nearest neighbor classification. In: CVPR '01, p. 58. IEEE Computer Society, Los Alamitos, CA, USA (2001)
  45. Zhang, H. , Berg, A. C. , Maire, M. , Svm-knn, J. M. : Discriminative nearest neighbor classification for visual category recognition. In: CVPR '06, pp. 2126–2136. IEEE Computer Society, Los Alamitos, CA, USA (2006)
  46. Mohammed J. Islam, Q. M. Jonathan Wu, Majid Ahmadi, Maher A. Sid-Ahmed, 2007 International Conference on Convergence Information Technology," Investigating the Performance of Naive- Bayes Classifiers and K- Nearest Neighbor Classifiers"
  47. N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. Proceedings of the 1995 AC M SIGMOD Inter- national Conference on Management of Data, 1995.
  48. T. Cover and P. Hart. , 1967. Nearest neighbor pattern classification. IEEE Transaction on Information Theory, 21–27.
  49. Latourrette, M. , 2000. Toward an explanatory similarity measure for nearest-neighbor classification. In: ECML '00: Proceedings of the 11th European Conference on Machine Learning, London, UK, 238–245.
  50. R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley Inter science, 2nd Ed.
  51. Q. J. Wu. , 2007. Class Notes- Machine Learning and Computer Vision. University of Windsor, Windsor, ON, Canada.
  52. Domeniconi, C. , Peng, J. , Gunopulos, 2002. D. : Locally adaptive metric nearest-neighbor classification. IEEE Trans. Pattern Anal. Mach. Intell. ,Vol. 24,No. 9, 1281–1285
  53. M. Hanmandlu, O. V. Ramana Murthy, 2006. Fuzzy model based recognition of handwritten numerals, the journal of pattern recognition society, 1840 – 1854.
  54. Vapnik, 1998. statistical learning theory. Wiley, New York.
  55. Knerr S, Personnaz L, Dreyfus G, 1990. Single-layer learning revisited a stepwise procedure f or building and training a neural network. In: Fogelman J (Ed) Nero computing: algorithms, architectures, and applications. Springer- Verlag, New York.
  56. Hastie T, Tibshirani R, 1998. Classification by pair wise coupling. Ann Stat ,Vol. 26,No. 2,451–471
  57. Platt JC, C hristiani N, Shawe–Taylor, 1999. Large margin Dag's f or multiclass classification. In: Solla SA, Leen TK, Muller KR (eds) Proceedings of the neural information processing systems ( NIPS'99). MIT Press, 547–553
  58. A. Harifi and A. Aghagolzadeh, 2004. " A New Pattern for Handwritten Persian/Arabic Digit Recognition", Journal of Information Technology, Vol. 3, 249-252.
  59. H. Mir Mohammad Hosseini and A. Bouzerdoum, 1996. "A Combined Method for Persian and Arabic Handwritten Digit Recognition", Australian New Zealand Conference on Intelligent Information System, 80 – 83.
  60. S. Mozaffari, K. Faez & H. Rashidy Kanan, 2004. "Recognition of Isolated Handwritten Farsi/Arabic Alphanumeric Using Fractal Codes", Image Analysis and Interpretation, 6th Southwest Symposium, 104-108.
  61. H. Soltanzadeh and M. Rahmati, 2004. "Recognition of Persian handwritten digits using image profiles of multiple orientations", Pattern Recognition Letters, Vol. 25, 1569–1576.
  62. J. Sadri, C. Y. Suen and T. D. Bui, 2003. "Application of Support Vector Machines for Recognition of Handwritten Arabic/Persian Digits", Proceedings of the 2nd Conference on Machine Vision and Image Processing & Applications, Vol. 1, 300-307.
  63. M. Dehghan and K. Faez, 1997. "Farsi Handwritten Character Recognition With Moment Invariants", Proceedings of 13th International Conference on Digital Signal Processing, Vol. 2, 507-510.
  64. M. Ziaratban, K. Faez and F. Faradji, 2007. "Language-Based Feature Extraction Using Template-Matching in Farsi/Arabic Handwritten Numeral Recognition", Proceedings of 9th International Conference on Document Analysis and Recognition, Vol. 1, 297-301.
  65. S. Mozaffari, K. Faez and M. Ziaratban, 2005. "Structural Decomposition and Statistical Description of Farsi/Arabic Handwritten Numeric Characters" Proceedings of the 8th Intl. Conference on Document Analysis and Recognition, Vol. 1, 237- 241.
  66. A. Mowlaei and K. Faez, 2003. "Recognition Of Isolated Handwritten Persian /Arabic Characters and Numerals Using Support Vector Machines", Proceedings of XIII Workshop on Neural Networks for Signal Processing, 547-554.
  67. A. Mowlaei, K. Faez, A. Highlight, 2002. "Feature Extraction with Wavelet Transform for Recognition of Isolated Handwritten Farsi/Arabic Characters and Numerals", Digital Signal Processing, Vol. 2, 923- 926.
  68. O. rashnodi, H. sajedi,M. saniee, 2011. " Persian Handwritten Digit Recognition Using Support Vector Machines",international journal of computer applications,Vol. 29, No. 12.
  69. O. rashnodi, H. sajedi, M. Saniee, 2011. " Using Box Approach in Persian Handwritten Digits Recognation ", international journal of computer applications, Vol. 32,
Index Terms

Computer Science
Information Sciences

Keywords

Central moments Variance Covariance Median support vector machine principle component analysis K-Nearest Neighbor Sequential Minimal Optimization