CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Improving Embedding Capacity by using the Z4-linearity of Preparata Codes

by Houda Jouhari, El Mamoun Souidi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 53 - Number 18
Year of Publication: 2012
Authors: Houda Jouhari, El Mamoun Souidi
10.5120/8518-2553

Houda Jouhari, El Mamoun Souidi . Improving Embedding Capacity by using the Z4-linearity of Preparata Codes. International Journal of Computer Applications. 53, 18 ( September 2012), 1-6. DOI=10.5120/8518-2553

@article{ 10.5120/8518-2553,
author = { Houda Jouhari, El Mamoun Souidi },
title = { Improving Embedding Capacity by using the Z4-linearity of Preparata Codes },
journal = { International Journal of Computer Applications },
issue_date = { September 2012 },
volume = { 53 },
number = { 18 },
month = { September },
year = { 2012 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume53/number18/8518-2553/ },
doi = { 10.5120/8518-2553 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:54:33.283840+05:30
%A Houda Jouhari
%A El Mamoun Souidi
%T Improving Embedding Capacity by using the Z4-linearity of Preparata Codes
%J International Journal of Computer Applications
%@ 0975-8887
%V 53
%N 18
%P 1-6
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents a novel steganographic scheme based on nonlinear Preparate codes that can achieve better performance for application in steganography than simple linear codes currently in use. The idea of this paper is to use the Z4-linearity of Preparata non-linear codes for the construction of a new steganographic scheme and to show that quaternary covering functions can provide embedding capacity higher than binary ones and can maintain good image quality as well.

References
  1. H. J. Highland, Data encryption: a non-mathematical approach, Comput. Secur. 16 (1997) 369386.
  2. F. A. P. Petitcolas, R. J. Anderson, M. G. Kuhn, Information hiding: a survey, Proc. IEEE Spec. Issue Prot. Multimedia Content 87 (7) (1999) 10621078.
  3. H. Wang, S. Wang, Cyber warfare: steganography vs. steganalysis, Commun. ACM 47 (10) (2004) 7682.
  4. D. W. Bender, N. M. Gruhl, A. Lu, Techniques for data hiding, IBM Syst. J. 35 (1996) 313316.
  5. C. K. Chan, L. M. Chen, Hiding data in images by simple LSB substitution, Pattern Recognit. 37 (3) (2004) 469474.
  6. R. Crandall, "Some notes on steganography". Posted on steganography mailing list, 1998, http://os. inf. tudresden. de/ westfeld/crandall. pdf.
  7. J. Bierbauer and J. Fridrich, "Constructing good covering codes for applications in steganography", in Transactions on Data Hiding and Multimedia Security III, Lecture Notes in Computer Science, Volume 4920, Pages 1-22, 2008.
  8. M. van Dijk and F. Willems, "Embedding information in grayscale images", in Proc. 22nd Symp. Information and Communication Theory Benelux, Enschede, The Netherlands, May 15-16, 2001, pp. 147-154.
  9. F. Galand and G. KAbatiansky, "Information hiding by coverings", in Proc. ITW, Paris, France, 2003, pp. 151-154.
  10. A. Westfeld, : "F5: A steganographic algorithm: High capacity despite better steganalysis". In: Moskowitz, I. S. (ed) IH 2001. LNCS, vol. 2137, pp. 289-302. Springer, Heidelberg (2001).
  11. D. Sch¨onfeld and A. Winkler : "Embedding with syndrome coding based on BCH codes:," in Proceedings of the 8th workshop on Multimedia and security, pp. 214–223, 2006.
  12. J. Bierbrauer, "On Crandalls Problem". 1998 [Online]. Available: http://www. ws. binghamton. edu/fridrich/covcodes. pdf, Personal Communication.
  13. W. Stalling, "Cryptography and Network Security". Englewood Cliffs, NJ: Prentice-Hall, 1999.
  14. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A Sloane, and P. Sol, "The Z4-linearity of Kerdock, Preparata, Goethals, and related codes," IEEE Trans. Inform. Theory, vol. 40, pp. 301319, Mar. 1994.
  15. B. R. MacDonald, Finite Rings with Identity. New York Marcel Dekker 1974.
  16. F. J. MacWilliams and N. I. A. Sloane, The Theory of Error-Correcting Codes. Amsterdam: North-Holland, 1977.
  17. Moerland, T. , "Steganography and Steganalysis", Leiden institute of Advanced Computing Science, Silman, J. , Steganography and Steganalysis: An Overview, SANS Institute, 2001 Jamil, T. , "Steganography: The art of hiding information is plain sight", IEEE Potentials, 18 : 01, 1999.
  18. J. Fridrich and D. Soukal, : "Matrix embedding for large payloads," IEEE Trans. Inf. Security Forensics, vol. 1, no. 3, pp. 390–394, Sept 2006.
Index Terms

Computer Science
Information Sciences

Keywords

Nonlinear codes Codes over rings Quaternary codes Embedding efficiency Preparata codes