CFP last date
20 December 2024
Reseach Article

Fixed Point Theorem for Fuzzy Mappings in Generalized R – Fuzzy Metric Spaces

by Syed Shahnawaz Ali, Anil Rajput, Jainendra Jain, D. S. Solanki
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 53 - Number 16
Year of Publication: 2012
Authors: Syed Shahnawaz Ali, Anil Rajput, Jainendra Jain, D. S. Solanki
10.5120/8508-2519

Syed Shahnawaz Ali, Anil Rajput, Jainendra Jain, D. S. Solanki . Fixed Point Theorem for Fuzzy Mappings in Generalized R – Fuzzy Metric Spaces. International Journal of Computer Applications. 53, 16 ( September 2012), 31-37. DOI=10.5120/8508-2519

@article{ 10.5120/8508-2519,
author = { Syed Shahnawaz Ali, Anil Rajput, Jainendra Jain, D. S. Solanki },
title = { Fixed Point Theorem for Fuzzy Mappings in Generalized R – Fuzzy Metric Spaces },
journal = { International Journal of Computer Applications },
issue_date = { September 2012 },
volume = { 53 },
number = { 16 },
month = { September },
year = { 2012 },
issn = { 0975-8887 },
pages = { 31-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume53/number16/8508-2519/ },
doi = { 10.5120/8508-2519 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:54:28.801039+05:30
%A Syed Shahnawaz Ali
%A Anil Rajput
%A Jainendra Jain
%A D. S. Solanki
%T Fixed Point Theorem for Fuzzy Mappings in Generalized R – Fuzzy Metric Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 53
%N 16
%P 31-37
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The study of theory of fuzzy sets was initiated by Zadeh in 1965. Since then many authors have extended and developed the theory of fuzzy sets in the fields of topology and analysis. The notion of fuzzy metric spaces has very important applications in quantum particle physics. As a result many authors have extended the Banach's Contraction Principle to fuzzy metric spaces and proved fixed point and common fixed point theorems for fuzzy metric spaces. The aim of this paper is to introduce the new definition of R-fuzzy metric space and establish a fixed point theorem for fuzzy mappings in generalized R-fuzzy metric spaces.

References
  1. Dhage B. C. 1992. "Generalized Metric Spaces and Mappings with Fixed Point". Bull. Calcutta Math. Soc. , vol. 84(4), pp. 329–336.
  2. George A. and Veeramani P. 1994. "On Some Results in Fuzzy Metric Spaces". Fuzzy Sets and Systems, vol. 64, pp. 395-399.
  3. Gregori V. and Sapena A. 2002. "On Fixed Point Theorem in Fuzzy Metric Spaces". Fuzzy Sets and Systems, vol. 125, pp. 245–252.
  4. Kramosil I. and Michalek J. 1975. "Fuzzy Metric and Statistical Metric Spaces". Kybernetica, vol. 11, pp. 326–334.
  5. Mihet D. 2004. "A Banach Contraction Theorem in Fuzzy Metric Spaces". Fuzzy Sets and Systems, vol. 144, pp. 431–439.
  6. Rhoades B. E. 1996. "A Fixed Point Theorem for Generalized Metric Spaces". Int. J. Math. Math. Sci. , vol. 19(1), pp. 145–153.
  7. Saadati R. and Park J. H. 2006. "On the Intuitionistic Fuzzy Topological Spaces". Chaos, Solitons and Fractals, vol. 27, pp. 331–344.
  8. Schweizer B. , Sherwood H. , and Tardiff R. M. 1988. "Contractions on PM-Space Examples and Counterexamples". Stochastica, vol. 1, pp. 5–17.
  9. Sedghi S. and Shobe N. 2006. "Fixed Point Theorem in M-Fuzzy Metric Spaces with Property (E)". Advances in Fuzzy Mathematics, vol. 1, pp. 55-65.
  10. Singh B. and Sharma R. K. 2002. "Common Fixed Points via Compatible Maps in D-Metric Spaces". Rad. Mat. , vol. 11(1), pp. 145–153.
  11. Singh Bijendra and Chouhan M. S. 1997. "Generalized Fuzzy Metric Space and Fixed Point Theorem". Bull. Calcutta Math. Soc. , vol. 89, pp. 457-460.
  12. Singh Bijendra, Jain Shishir and Jain Shobha. 2006. "Semi Compatibility and Common Fixed Point in Fuzzy Metric Space". Bull. Calcutta Math. Soc. , vol. 98, pp. 229-236.
  13. Zadeh L. 1965. "Fuzzy Sets". Inform and control, vol. 8, pp. 338-353.
Index Terms

Computer Science
Information Sciences

Keywords

R-Fuzzy Contractive Mapping Complete R-fuzzy Metric Space Semi-Compatible Maps D-Metric Space Weak Compatibility Common Fixed Point