CFP last date
20 December 2024
Reseach Article

A Web-accessible Framework for Automated Storage with Compression and Textural Classification of Malaria Parasite Images

by Maitreya Maity, Ashok K. Maity, Pranab K. Dutta, Chandan Chakraborty
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 52 - Number 15
Year of Publication: 2012
Authors: Maitreya Maity, Ashok K. Maity, Pranab K. Dutta, Chandan Chakraborty
10.5120/8279-1906

Maitreya Maity, Ashok K. Maity, Pranab K. Dutta, Chandan Chakraborty . A Web-accessible Framework for Automated Storage with Compression and Textural Classification of Malaria Parasite Images. International Journal of Computer Applications. 52, 15 ( August 2012), 31-39. DOI=10.5120/8279-1906

@article{ 10.5120/8279-1906,
author = { Maitreya Maity, Ashok K. Maity, Pranab K. Dutta, Chandan Chakraborty },
title = { A Web-accessible Framework for Automated Storage with Compression and Textural Classification of Malaria Parasite Images },
journal = { International Journal of Computer Applications },
issue_date = { August 2012 },
volume = { 52 },
number = { 15 },
month = { August },
year = { 2012 },
issn = { 0975-8887 },
pages = { 31-39 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume52/number15/8279-1906/ },
doi = { 10.5120/8279-1906 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:52:19.760753+05:30
%A Maitreya Maity
%A Ashok K. Maity
%A Pranab K. Dutta
%A Chandan Chakraborty
%T A Web-accessible Framework for Automated Storage with Compression and Textural Classification of Malaria Parasite Images
%J International Journal of Computer Applications
%@ 0975-8887
%V 52
%N 15
%P 31-39
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Malaria being one of the serious health burdens especially in Indian population is conventionally diagnosed by expert pathologists through microscopic observation of stained peripheral blood smears. In order to provide rapid and efficient healthcare support to the common people at rural areas where experts are not (often) available, there is indeed a requirement of developing web-enabled healthcare system. In view of this, in this study, a web-accessible framework for automated storage of compressed microscopic images and texture-based screening of malaria parasite has been developed to provide rapid and efficient diagnosis even at remote public health clinics. It consists of (a) automated storage of microscopic images followed by JPEG image compression for faster transmission; (b) watershed transform based erythrocyte segmentation followed by image preprocessing; (c) texture feature extraction and selection; and (d) supervised classification and validation. Here, total 76 textures are extracted from segmented erythrocytes. Twenty six significant features are selected by using SVM based recursive feature elimination (SVM-RFE) method. Thereafter, supervised classifiers viz. Naïve Baye's approach, C4. 5 and NBTree are considered for six-class classification problem and their performance are compared. From the result, it has been found that NBTRee classifier provides higher accuracy to classify P. vivax and P. falciparum (sensitivity: 99. 0%, specificity: 99. 8%) with different stages viz. ring, gametocytes and scizon under our developed web-accessible framework.

References
  1. W. H. Organization. 2004. The World Health Report 2004—Changing History,'Annex Table 2: Deaths by Cause, Sex and Mortality Stratum in WHO Regions, Estimates For 2002', World Health Organization, Geneva, Switzerland,
  2. W. H. Organization, 2008 World malaria report 2008: World Health Organization
  3. (2011). World Malaria Report 2011. Available: http://www. who. int/malaria/world_malaria_report_2011/en/
  4. F. B. Tek, A. Dempster, and I. Kale. 2009. Computer vision for microscopy diagnosis of malaria, Malar J, vol. 8. 153
  5. W. H. Organization. 1991. Basic Malaria Microscopy-Part I. Learner's Guide. 2. 2010, Geneva: WHO. 65-68
  6. F. E. McKENZIE, J. SIRICHAISINTHOP, R. S. Miller, R. A. Gasser Jr, and C. Wongsrichanalai. 2003. Dependence of malaria detection and species diagnosis by microscopy on parasite density, The American journal of tropical medicine and hygiene, vol. 69. 372-376
  7. G. Díaz, F. Gonzalez, and E. Romero 2007 Infected cell identification in thin blood images based on color pixel classification: comparison and analysis,812-821.
  8. S. P. Premaratne, N. Karunawera, S. Fernando, W. S. R. Perera, and R. Rajapakhsa,2003 A Neural Network Architecture for Automated Recognition of Intracellular Malaria Parasites in Stained Blood Films, ed: University of Colombo, Sri Lanka
  9. F. B. Tek, A. G. Dempster, and I. Kale. 2010. Parasite detection and identification for automated thin blood film malaria diagnosis, Comput. Vis. Image Underst. , vol. 114. 21-32
  10. K. Rao, A. Dempster, B. Jarra, and S. Khan 2002 Automatic scanning of malaria infected blood slide images using mathematical morphology
  11. S. W. S. Sio, W. Sun, S. Kumar, W. Z. Bin, S. S. Tan, S. H. Ong, H. Kikuchi, Y. Oshima, and K. S. W. Tan. 2007. MalariaCount: An image analysis-based program for the accurate determination of parasitemia, Journal of Microbiological Methods, vol. 68. 11-18
  12. F. Dagan, C. Weidong, and R. Fulton. 2002. Dynamic image data compression in the spatial and temporal domains: clinical issues and assessment, Information Technology in Biomedicine, IEEE Transactions on, vol. 6. 262-268
  13. M. Ansari and R. Anand. 2008. Recent Trends in Image Compression and its Application in Telemedicine and Teleconsultation,
  14. W. Yung-Gi and T. Shen-Chuan. 2001. Medical image compression by discrete cosine transform spectral similarity strategy, Information Technology in Biomedicine, IEEE Transactions on, vol. 5. 236-243
  15. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol. 9. 671-675
  16. E. Frank, M. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. Witten, and L. Trigg,2010. Weka-A Machine Learning Workbench for Data Mining, in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. , ed: Springer US. 1269-1277.
  17. R. C. Gonzalez and R. E. Woods, 2009 Digital Image Processing, 3 ed. : Pearson Prenice Hall
  18. N. Efford, 2000 Digital Image Processing A Practical Introduction Using Java: Pearson Educatio Limited
  19. M. J. Zukoski, T. Boult, and T. Iyriboz. 2006. A novel approach to medical image compression, International Journal of Bioinformatics Research and Applications, vol. 2. 89-103
  20. S. Raviraja and S. Osman 2008 A Novel Technique For Malaria Diagnosis Using Invariant Moments And By Image Compression, 730-733.
  21. Java 2 Platform, Enterprise Edition (J2EE) Overview. Available: http://java. sun. com/j2ee/overview. html
  22. B. Basham, K. Sierra, and B. Bates, 2009 Head First Servlets and JSP, 1 ed. : Shroff Publishers and Distributors Pvt. Ltd.
  23. M. Schmid. (2008). Fit_Polynomial. Available: http://imagejdocu. tudor. lu/doku. php?id=plugin:filter:fit_polynomial:start
  24. N. Bonnet. (2007). Available: http://rsb. info. nih. gov/ij/plugins/inserm514/index. html
  25. W. Burger and M. J. Burge, 2008 Digital Image Processing An Algorithmic Introduction using Java, 1 ed. : Springer
  26. J. -S. Lee. 1983. Digital image smoothing and the sigma filter, Computer Vision, Graphics, and Image Processing, vol. 24. 255-269
  27. P. Perona and J. Malik. 1990. Scale-space and edge detection using anisotropic diffusion, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 12. 629-639
  28. P. S. Liao, T. S. Chen, and P. C. Chung. 2001. A fast algorithm for multilevel thresholding, Journal of information science and engineering, vol. 17. 713-728
  29. Y. Tosa. (2006). Multi Otsu Threshold. Available: http://rsbweb. nih. gov/ij/plugins/multi-otsu-threshold. html
  30. N. Otsu. 1979. A Threshold Selection Method from Gray-Level Histograms, Systems, Man and Cybernetics, IEEE Transactions on, vol. 9. 62-66
  31. T. G. Smith Jr, G. D. Lange, and W. B. Marks. 1996. Fractal methods and results in cellular morphology — dimensions, lacunarity and multifractals, Journal of Neuroscience Methods, vol. 69. 123-136
  32. R. M. Haralick, K. Shanmugam, and I. H. Dinstein. 1973. Textural Features for Image Classification, Systems, Man and Cybernetics, IEEE Transactions on, vol. 3. 610-621
  33. G. Mary M. 1975. Texture analysis using gray level run lengths, Computer Graphics and Image Processing, vol. 4. 172-179
  34. A. Chu, C. M. Sehgal, and J. F. Greenleaf. 1990. Use of gray value distribution of run lengths for texture analysis, Pattern Recognition Letters, vol. 11. 415-419
  35. B. V. Dasarathy and E. B. Holder. 1991. Image characterizations based on joint gray level—run length distributions, Pattern Recognition Letters, vol. 12. 497-502
  36. M. Pietikainen, A. Hadid, G. Zaho, and T. Ahonen, 2011 Computer Vision Using Local Binary Patterns vol. 40: Springer
  37. R. Kohavi and G. H. John. 1997. Wrappers for feature subset selection, Artificial Intelligence, vol. 97. 273-324
  38. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. 2002. Gene selection for cancer classification using support vector machines, Machine Learning, vol. 46. 389-422
  39. M. Pirooznia, J. Yang, M. Q. Yang, and Y. Deng. 2008. A comparative study of different machine learning methods on microarray gene expression data, BMC genomics, vol. 9. S13
  40. I. H. Written, E. Frank, and M. A. Hall, 2011 Data Mining Practical Machine Learning Tools and Techniques, 3 ed. : Elsevier India Private Limited
  41. J. R. Quinlan, 1993 C4. 5: Programs for Machine Learning: Morgan Kaufmann
  42. R. Kohavi 1996 Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid
Index Terms

Computer Science
Information Sciences

Keywords

Web application J2EE platform Compression JPEG Malaria Screening Texture Feature Extraction Classification