We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

An Adaptative Multi-agent System Approach for Image Segmentation

by Redjimi Mohammed, Amri Said
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 51 - Number 12
Year of Publication: 2012
Authors: Redjimi Mohammed, Amri Said
10.5120/8095-1676

Redjimi Mohammed, Amri Said . An Adaptative Multi-agent System Approach for Image Segmentation. International Journal of Computer Applications. 51, 12 ( August 2012), 21-26. DOI=10.5120/8095-1676

@article{ 10.5120/8095-1676,
author = { Redjimi Mohammed, Amri Said },
title = { An Adaptative Multi-agent System Approach for Image Segmentation },
journal = { International Journal of Computer Applications },
issue_date = { August 2012 },
volume = { 51 },
number = { 12 },
month = { August },
year = { 2012 },
issn = { 0975-8887 },
pages = { 21-26 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume51/number12/8095-1676/ },
doi = { 10.5120/8095-1676 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:50:13.608195+05:30
%A Redjimi Mohammed
%A Amri Said
%T An Adaptative Multi-agent System Approach for Image Segmentation
%J International Journal of Computer Applications
%@ 0975-8887
%V 51
%N 12
%P 21-26
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This article presents a multi-agent approach for the segmentation of images. A multi-agent system (MAS) is a distributed system consisting of a set of agents that interact with themselves in an environment they are able to perceive and on which they can act. The proposed solution consists in cutting the space of the image to treat it in a set of sub-spaces (partitions of the image) in which several agents are created to detect the outlines of objects then to follow them (these agents are called detector – followers agents). These agents adapt a very efficient algorithm of detection and follow the outline according to the characteristics of the region that they evolve in. The information so collected is transmitted to levels of supervision agents (agents partitions) which take care they with collecting the information emitted by the agents detector - followers, to update tables containing the parameters of segmentation and to elaborate global strategies of management of the agents detector - followers (creation, destruction, setting in a stand-by mode or initialization of agents detector-followers) . At the highest level of this agent's hierarchy, we find the supervisor agent of this whole system. An implementation of this approach by the use of Madkit system allowed us to observe a gain in performances and in precision very important due to parallel, concurrent and cooperating execution of tasks.

References
  1. Canny, J. November 1986. A Computational Approach To Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714.
  2. Marr, D. and Hildreth, E. C. 1980 Theory of Edge Detection. Proc. of the Roy. Soc. Lond. B, Vol 207.
  3. Shi, J. and Malik, J. August, 2000 Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and machine Intelligence , 22(8), pp. 888-905.
  4. Missaoui, R. Sarifuddin, M. , Baaziz, N. and Guesdon, V. March 2005 Détection efficace de contours par décomposition de l'image en régions homogènes. Actes de la conférence SETIT 2005, Sousse-Tunisie. (In french)
  5. Fan, T. J. , Medioni G. G. , and Nevatia. , R. December 1987 Segmented description of 3-D surfaces. IEEE J. Robotics Automat. , 3(6):527–538.
  6. Ferber, J. 1999 Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence Addison-Wesley Longman Publishing Co. , Inc. , Boston, MA, USA.
  7. Krishnamurthy, E. V. and Murthy, V. K. 2006 Distributed agent paradigm for soft and hard computation. Journal of Network and Computer Applications, 29(2):124–146.
  8. Ferber, J. 1995 Les systems multi-agents vers une intelligence collective. Interedition Paris. (In French)
  9. Gutknecht, O. and Ferber J. 2000 The MadKit agent plateforme architecture. Laboratoire d'Informatique, Robotique et Microélectronique de Montpellier .
  10. Bellet, F. June 1998 Une approche incrémentale, coopérative et adaptative pour la segmentation des images en niveau de gris. Institut National Polytechnique de Grenoble, France. (In french)
  11. Boucher, A. Fevrier 1999 Une approche décentralisée et adaptative de la gestion d'informations en vision. Thèse de doctorat de l'université Joseph Fourier Grenoble I. (In french)
  12. P. Remagnino, P. , Tan, T. and Baker, K. 1998 Multi-agent visual surveillance of dynamic scenes. Image and vision computing, Elsevier Ed. , vol. 16, pp 529-532.
  13. Ramos, V. and Almeida, F. 2000 Artificial Ant Colonies in Digital Image abitats. in: Dorigo, M. et al (editors), Proceedings of ANTS'2000 - 2nd International Workshop on Ant Algorithms pp 113-116,Brussels, Belgium.
  14. Chialvo, D. and Millonas, M. 1995 How Swarms Build Cognitive Maps. in: L. Steels (editor), The Biology and Technology of Intelligent Autonomous Agents, pp 439-450, NATO ASI Series.
  15. Liu, J. and Tang, Y. Y. June 1999 Adaptive Image Segmentation With Distributed Behavior-Based Agents. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 6, pp. 544-551.
  16. Richard, N. , Dojat, M. and Garbay, C. 2004 Automated segmentation of human brain MR images using a multi-agent approach. Artificial Intelligence in Medicine, 30(2):153–176.
  17. Chitsaz M. and Seng W. C. 2009 Medical Image Segmentation by Using Reinforcement Learning Agent. icdip, pp. 216-219, 2009 International Conference on digital Image Processing.
  18. Chitsaz, M. and Woo, C S. 2008 The rise of multi-agent and R. L. segmentation methods for biomedical images. In Proc. The 4th Malaysian Software Engineering Conference (MySEC 2008), Kuala Terengganu, Malaysia.
  19. Sarifuddin, M. , Missaoui R. and Laggoune, H. March 2005 Technique de détection de contours flous et bruités. Actes de la conférence SETIT 2005, Sousse- Tunisie. (In french)
  20. Bourennane, E. , Gouton, P. , Paindavoine M. and Truchetet, F. 2002 Generalization of Canny–Deriche Filter for detection of noisy exponential edge. Signal Processing 82 pp. 1317 – 1328.
Index Terms

Computer Science
Information Sciences

Keywords

Agent multi-agent system (MAS) outline detection image segmentation