CFP last date
20 January 2025
Reseach Article

Analysis of Distributed Algorithms to Remove Correlations for Reducing Average Download Time in Peer-to-Peer Networks

by P. Satheesh, B. Srinivas, M. V. S. Narayana
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 51 - Number 10
Year of Publication: 2012
Authors: P. Satheesh, B. Srinivas, M. V. S. Narayana
10.5120/8077-1477

P. Satheesh, B. Srinivas, M. V. S. Narayana . Analysis of Distributed Algorithms to Remove Correlations for Reducing Average Download Time in Peer-to-Peer Networks. International Journal of Computer Applications. 51, 10 ( August 2012), 19-25. DOI=10.5120/8077-1477

@article{ 10.5120/8077-1477,
author = { P. Satheesh, B. Srinivas, M. V. S. Narayana },
title = { Analysis of Distributed Algorithms to Remove Correlations for Reducing Average Download Time in Peer-to-Peer Networks },
journal = { International Journal of Computer Applications },
issue_date = { August 2012 },
volume = { 51 },
number = { 10 },
month = { August },
year = { 2012 },
issn = { 0975-8887 },
pages = { 19-25 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume51/number10/8077-1477/ },
doi = { 10.5120/8077-1477 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:50:02.211185+05:30
%A P. Satheesh
%A B. Srinivas
%A M. V. S. Narayana
%T Analysis of Distributed Algorithms to Remove Correlations for Reducing Average Download Time in Peer-to-Peer Networks
%J International Journal of Computer Applications
%@ 0975-8887
%V 51
%N 10
%P 19-25
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The Peer-to-Peer (P2P) networks are widely used for internet file sharing. In general the file download can take minutes or hours depending on the level of network congestion or the service capacity fluctuations. In this paper, we consider two major factors that have significant impact on average download time, namely, the spatial heterogeneity of service capacities in different source peers and the temporal fluctuations in service capacities of a single source peer. We show that both spatial heterogeneity and temporal correlations in service capacity increase the average download time in P2P networks and then analyze a simple, distributed algorithm to reduce the file download time. Here, we analyzes a new algorithms called that effectively remove the negative factors of the existing systems i. e. Parallel downloading, Chunk based switching, periodic switching, thus reduce the average download time. Our algorithm removes correlations in the capacity fluctuations and the heterogeneity in space, thus greatly reducing the average download time.

References
  1. Y. M. Chiu and D. Y. Eun, "Minimizing file download time over stochasticchannels in peer-to-peer networks," in Proc. 40th Annu. Conf. Information Sciences and Systems (CISS), Princeton, NJ, Mar. 2006.
  2. D. Qiu and R. Srikant, "Modelling and performance analysis of Bit-Torrent-like peer-to-peer networks," in Proc. ACM SIGCOMM, Aug. 2004.
  3. X. Yang and G. deVeciana, "Service capacity of peer to peer networks,"in Proc. IEEE INFOCOM, Mar. 2004, pp. 2242–2252.
  4. K. P. Gummadi, R. J. Dunn, and S. Saroiu, "Measurement, modeling,and analysis of a peer-to-peer file sharing workload," in Proc. ACMSymp. Operating Systems Principles (SOSP), 2003.
  5. M. Adler, R. Kumar, K. Ross, D. Rubenstein, D. Turner, and D. D. Yao, "Optimal peer selection in a free-market peer-resource economy,"in Proc. Workshop on Economics of Peer-to-Peer Systems (P2PEcon)Cambridge, MA, Jun. 2004. Brown, L. D. , Hua, H. , and Gao, C. 2003. A widget framework for augmented interaction in SCAPE.
  6. M. Adler, R. Kumar, K. Ross, D. Rubenstein, T. Suel, and D. D. Yao,"Optimal peer selection for P2P downloading and streaming," in Proc. IEEE INFOCOM, Miami, FL, Mar. 2005, pp. 1538–1549.
  7. D. S. Bernstein, Z. Feng, and B. N. Levine, "Adaptive peer selection,"in Proc. Int. Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA,Feb. 2003.
  8. S. G. M. Koo, K. Kannan, and C. S. G. Lee, "A genetic-algorithm-basedneighbor-selection strategy for hybrid peer-to-peer networks," in Proc. IEEE Int. Conf. Computer Communications and Networks (ICCCN2004), Rosemont, IL, Oct. 2004, pp. 469–474.
  9. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "AScalable Content Addressable Network," Univ. California, Berkeley,Tech. Rep. TR-00-010, 2000.
  10. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,"Chord: A scalable peer-to-peer lookup service for Internet applications,"in Proc. ACM SIGCOMM, 2001.
  11. B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz, "Tapestry: A resilient global-scale overlay for servicedeployment," IEEE J. Sel. Areas Commun. , vol. 22, no. 1, pp. 41–53,Jan. 2004.
  12. J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, "Informed contentdelivery across adaptive overlay networks," in Proc. ACM SIGCOMM,2002.
  13. C. Gkantsidis and P. R. Rodriguez, "Network coding for large scalecontent distribution," in Proc. IEEE INFOCOM, Miami, FL, Mar. 2005, pp. 2235–2245.
  14. "Peer-to-peer content distribution: Using client PC resources to storeand distribute content in the enterprise" Intel Corp. , Tech. Rep. ,Sep. 2003 [Online]. Available: http://www. intel. com/it/digital-enterprise/peer-peer-content-distribution. pdf.
  15. K. K. Ramachandran and B. Sikdar, "An analytic framework for modelingpeer to peer networks," in Proc. IEEE INFOCOM,Mar. 2005, pp. 215–269.
  16. S. G. M. Koo, C. Rosenberg, and D. Xu, "Analysis of parallel downloadingfor large file distribution," in Proc. IEEE Int. Workshop on FutureTrends in Distributed Computing Systems (FTDCS), May 2003,pp. 128–135.
  17. F. Lo Piccolo and G. Neglia, "The effect of heterogeneous link capacitiesin BitTorrent-like file sharing system," in IEEE Int. Workshop onHot Topics in Peer-to-Peer Systems (HOT-P2P), Oct. 2004, pp. 40–47.
  18. T. Ng, Y. Chu, S. Rao, K. Sripanidkulchai, and H. Zhang, "Measurement-based optimization techniques for bandwidth-demandingpeer-to-peer systems," in Proc. IEEE INFOCOM, Apr. 2003, pp. 2199–2209.
  19. Y. Kulbak and D. Bickson, "The eMule Protocol Specification," Jan. 2005 [Online]. Available: http://leibniz. cs. huji. ac. il/tr/acc/2005/HUJICSE-LTR-2005-3_emule. pdf
  20. R. Sherwood, R. Braud, and B. Bhattacharjee, "Slurpie: A cooperativebulk data transfer protocol," in Proc. IEEE INFOCOM, Hong Kong,Mar. 2004, pp. 941–951.
  21. B. Cohen, "BitTorrent Protol Specification," [Online]. Available:http://ww. bittorrent. com/protocol. html.
  22. S. Saroiu, K. P. Gummadi, and S. D. Gribble, "A measurement studyf peer-to-peer file sharing systems," in Proc. ACM Multimedia Computingand Networking (MMCN), 2002.
  23. M. Jain and C. Dovrolis, "End-to-end estimation of the available bandwidthvariation range," in Proc. ACM Sigmetrics, Jun. 2005.
  24. N. Hu and P. Steenkiste, "Evaluation and characterization of availablebandwidth probing techniques," IEEE J. Sel. Areas Commun. , vol. 21,no. 6, pp. 879–894, Aug. 2003.
  25. S. M. Ross, Stochastic Processes, 2nd ed. New York: Wiley, 1996.
  26. I. Rhee and L. Xu, "Limitations of equation-based congestion control,"in Proc. ACM SIGCOMM, Aug. 2005.
  27. A. Müller and D. Stoyan, Comparison Methods for Stochastic Modelsand Risks. New York: Wiley, 2002.
  28. C. Gkantsidis, M. Ammar, and E. Zegura, "On the effect of large-scaledeployment of parallel downloading," in Proc. IEEE Workshop on InternetApplications (WIAPP), Jun. 2003, pp. 79–89.
Index Terms

Computer Science
Information Sciences

Keywords

P2P networks Peer Selection Strategy Service Capacity