CFP last date
20 December 2024
Reseach Article

Nonlinear Blind Source Separation for EEG Signal Pre-processing in Brain-Computer Interface System for Epilepsy

by D. A. Torse, R. R. Maggavi, S. A. Pujari
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 50 - Number 14
Year of Publication: 2012
Authors: D. A. Torse, R. R. Maggavi, S. A. Pujari
10.5120/7838-0911

D. A. Torse, R. R. Maggavi, S. A. Pujari . Nonlinear Blind Source Separation for EEG Signal Pre-processing in Brain-Computer Interface System for Epilepsy. International Journal of Computer Applications. 50, 14 ( July 2012), 12-19. DOI=10.5120/7838-0911

@article{ 10.5120/7838-0911,
author = { D. A. Torse, R. R. Maggavi, S. A. Pujari },
title = { Nonlinear Blind Source Separation for EEG Signal Pre-processing in Brain-Computer Interface System for Epilepsy },
journal = { International Journal of Computer Applications },
issue_date = { July 2012 },
volume = { 50 },
number = { 14 },
month = { July },
year = { 2012 },
issn = { 0975-8887 },
pages = { 12-19 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume50/number14/7838-0911/ },
doi = { 10.5120/7838-0911 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:48:17.180353+05:30
%A D. A. Torse
%A R. R. Maggavi
%A S. A. Pujari
%T Nonlinear Blind Source Separation for EEG Signal Pre-processing in Brain-Computer Interface System for Epilepsy
%J International Journal of Computer Applications
%@ 0975-8887
%V 50
%N 14
%P 12-19
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Epilepsy is one of the most common neurological disorders characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) potentials represent the combined effect of potentials from a fairly wide region of the scalp. Mixing some underlying components of brain activity apparently generates these potentials. The aim of the present study is to separate the original components of brain activity waveforms from their linear mixture. The probability distributions and mixing coefficients knowledge is not considered. This is called the problem of "Nonlinear Blind Source Separation" (NBSS). It consists of the recovery of unobservable original independent components from several mixed components covered by mixed sources. The current study used recently developed source separation method known as "Independent Component Analysis" (ICA) technique for solving blind EEG source separation problem. The proposed ICA NBSS model has been implemented using the Matlab version 7. 7. The measured real EEG data signals obtained from epileptic states. The results of the present work show the good performance of the proposed model in separating the mixed signals.

References
  1. R. S. Fisher, "Epilepsy," in Pharmacological Management of Neurological and Psychiatric Disorders, S. J. Enna and J. T. Coyle, Eds: McGraw-Hill, 1998.
  2. Xiang-Yang, Z. and C. Yen-Wei, 1998. Signal separation by independent component analysis based on a genetic algorithms. Department of Electrical and Electronic Engineering, University of Okinawa,Japan.
  3. Makeig, S. , T-P. Jung, and T. J. Sejnowski, 1996. Using Feedforward Neural Networks to Monitor Alertness from Changes in EEG Correlation and Coherence. In: Touretzky, D. , M. Mozer and M . Hasselmo (Eds. ), Advances in Neural Information Processing Systems. MIT Press, Cambridge, M A. , 8: 931-937,
  4. T. P. Jung, S. Makeig and C. Humphries, 1998. Extended ICA removes artifacts from electroencephalographic recordings. Adv. Neural Info. Process. Sys. , Cambridge, 10: 894-900.
  5. Mckeown, M. and S. Makeig, 1998. Blind separation of functional magnetic resonance imaging (fMRI) data, Hum. Brain Mapp. , 6(5-6): 368-372.
  6. Barros, A. K. , R. Rosipal, M. Girolami, G. Dorffner and N. Ohnishi, 2000. Extraction of Sleep-Spindles from the Electroencephalogram (EEG). In Artificial Neural Networks in Medicine and Biology (ANNIMAB-1), Göteborg, Sweden, Springer, pp: 125-130,
  7. Leichter C. S. , A. Cichocki and N. Kasabov, 2001. Independent component analysis and evolving fuzzy neural networks for the classification of single trial EEG data. In: Proceeding 5th Biannu. Conf. Artificial Neural Network Expert System (ANNES 2001), pp: 100-105.
  8. Carl, S. E. , C. Andrzej and K. Nik, 2000. Independent component analysis and evolving fuzzy neural networks for the classification of single trial EEG data. Department of Information Science, University of Otago, Dunedin, New Zealand.
  9. World Health Organization Epilepsy Fact Sheet, January 2011.
  10. Government of India, Department of Health and Family Welfare, Mental Health Programme, 2011.
  11. M. Barry Sterman & Tobias Egner, "Foundation and Practice of Neurofeedback for the Treatment of Epilepsy", Applied Psychophysiology & Biofeedback, March 2006.
  12. James R. Evans, Andrew Barbanel Aptos, Introduction to Quantitative EEG and neurofeedback, California academic press, an imprint of Elsevier,2000.
  13. Qiang Wang, Olga Sourina, and Minh Khoa Nguyen, "EEG-based "Serious" Games Design for Medical Applications", IEEE International Conference on Cyberworlds, 2010.
  14. Attwood, H. L. , and MacKay, W. A. , Essentials of Neurophysiology, B. C. Decker, Hamilton, Canada, 1989.
  15. Nunez, P. L. , Neocortical Dynamics and Human EEG Rhythms, Oxford University Press, New York, 1995.
  16. Teplan, M. , 'Fundamentals of EEG measurements', Measmt Sci. Rev. , 2(2), 2002.
  17. Bickford, R. D. , 'Electroencephalography', in Encyclopedia of Neuroscience, Ed. G. Adelman, Birkhauser, Cambridge (USA), 1987, 371–373.
  18. Saeid Sanei and J. A. Chambers, "EEG SIGNAL PROCESSING", John Wiley & Sons Ltd. , 2007.
  19. Sterman, M. B. , MacDonald, L. R. , and Stone, R. K. , 'Biofeedback training of sensorimotor EEG in man and its effect on epilepsy', Epilepsia, 15, 1974, 395–416.
  20. Ashwal, S. , and Rust, R. , 'Child neurology in the 20th century', Pedia. Res. , 53, 2003, 345–361.
  21. Niedermeyer, E. , 'The normal EEG of the waking adult', Chapter 10, in Electroencephalography, Basic Principles, Clinical Applications, and Related Fields, Eds E. Niedermeyer and F. Lopes da Silva, 4th edn, Lippincott, Williams and Wilkins, Philadelphia, Pennsylvania, 1999, 174–188.
  22. Pfurtscheller, G. , Flotzinger, D. , and Neuper, C. , 'Differentiation between finger, toe and tongue movement in man based on 40 Hz EEG', Electroencephalogr. Clin. Neurophysiol. , 90, 1994, 456–460.
  23. Wanda Wyrwicka, Maurice B. Sterman, "Instrumental Conditioning of Sensorimotor Cortex EEG Spindles in the Waking Cat" Physiology and Behavior. Vol 3, pp 703-707 Pergamon Press, 1968
  24. Jasper, H. , 'Report of committee on methods of clinical exam in EEG', Electroencephalogr. Clin. Neurophysiol. , 10, 1958, 370–375.
  25. Nayak, D. , Valentin, A. , Alarcon, G. , Seoane, J. J. G. , Brunnhuber, F. , Juler, J. , Polkey, C. E. , and Binnie, C. D. , 'Characteristics of scalp electrical fields associated with deep medial temporal epileptiform discharges', Clin. Neurophysiol. , 115, 2004, 1423–1435.
  26. Barrett, G. , Blumhardt, L. , Halliday, L. , Halliday, A. M. , and Kriss, A. , 'A paradox in the lateralization of the visual evoked responses', Nature, 261, 1976, 253–255.
  27. Halliday, A. M. , Evoked potentials in neurological disorders', in Event-Related Brain Potentials in Man, Eds E. Calloway, P. Tueting, and S. H. Coslow, Academic Press, New York, 1978, 197–210.
  28. Cherry, C. E. , 'Some experiments in the recognition of speech, with one and two ears', J. Acoust. Soc. Am. , 25, 1953, 975–979.
  29. Herault, J. , and Jutten, C. , 'Space or time adaptive signal processing by neural models', Proceeding of the American Institute of Physics (AIP) Conference on Neural Networks for Computing, 1986 pp. 206–211.
  30. P. F¨oldi´ak, and Young, M. , 'Sparse coding in the primate cortex', in The Handbook of Brain Theory and Neural Networks, Eds Michael A. Arbib, 2nd edn. , MIT Press, Cambridge, Massachussetts, 1995, pp. 895–898.
  31. Einhauser, W. , Kayser, C. , Konig, P. , and Kording, K. P. , 'Learning the invariance properties of complex cells from their responses to natural stimuli', Eur. J. Neurosci. , 15, 2002, 475–486.
  32. Jutten, C. , and Karhunen, J. , 'Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures', Int. J. Neural Systems, 14(5), 2004, 267–292.
  33. Almeida, L. B. , 'Nonlinear Source Separation', in Synthesis Lectures on Signal Processing, Ed. J. Moura, Morgan & Claypool, California, USA, 2006.
Index Terms

Computer Science
Information Sciences

Keywords

Electroencephalogram Principal component analysis Nonlinear Blind Source Separation EEG based BCI