CFP last date
20 January 2025
Reseach Article

Some Applications of ??-P-Open Sets

by M.Parimala, R.Devi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 5 - Number 1
Year of Publication: 2010
Authors: M.Parimala, R.Devi
10.5120/886-1258

M.Parimala, R.Devi . Some Applications of ??-P-Open Sets. International Journal of Computer Applications. 5, 1 ( August 2010), 6-12. DOI=10.5120/886-1258

@article{ 10.5120/886-1258,
author = { M.Parimala, R.Devi },
title = { Some Applications of ??-P-Open Sets },
journal = { International Journal of Computer Applications },
issue_date = { August 2010 },
volume = { 5 },
number = { 1 },
month = { August },
year = { 2010 },
issn = { 0975-8887 },
pages = { 6-12 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume5/number1/886-1258/ },
doi = { 10.5120/886-1258 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T19:53:27.055184+05:30
%A M.Parimala
%A R.Devi
%T Some Applications of ??-P-Open Sets
%J International Journal of Computer Applications
%@ 0975-8887
%V 5
%N 1
%P 6-12
%D 2010
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we introduce some new separation axioms by utilizing the notions of αψ-p-open sets and αψ-preclosure operator.

References
  1. P. Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987) 375-382.
  2. M. Caldas, A separation axiom between pre-T0 and pre-T1 , East West J. Math., 3(2)(2001), 171-177.
  3. M. Caldas, T. Fukutake, S. Jafari and T. Noiri, Some applications of δ- preopen sets in topological spaces, Bull. Inst. Math. Acad. Sinica, Vol.33 No. 3 (2005), 261-276.
  4. R. Devi, A. Selvakumar and M. Parimala, αψ-closed sets in topological spaces (submitted).
  5. S. Jafari, On a weak separation axiom, Far East J. Math. Sci., 3(5)(2001), 779-787.
  6. S. Jafari, Pre-rarely-p-continuous functions, Far East J. Math. Sci. (FJMS) Special Vol. (2000), Part I (Geometry and Topology), 87-96.
  7. S. Jafari, On certain types of notions via preopen sets, Tamkang J. Math. 37(4)(2006), 391-398.
  8. A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Calcutta Math. Soc., 82(1990), 415-422.
  9. N.Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
  10. A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre continuous and weak pre continuous mappings, Proc. Math. Phys. Soc., Egypt, 53 (1982), 47-53.
  11. O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961- 970.
  12. T. Noiri, Super-continuity and some strong forms of continuity, Indian J.Pure Appl. Math., 15 (1984), 17-22.
  13. T.M.J. Nour, Contributions to the theory of bitopological spaces, Ph.D. The- sis, Univ. of Delhi, 1989.
  14. S. Raychaudhuri and M.N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21(1993), 357-366.
  15. M.K.R.S. Veera kumar, Between semi-closed sets and semi-pre-closed sets, Rend. Istit. Mat. Univ. Trieste XXXII, (2000), 25-41.
  16. N.V. Velicko, H -closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.
  17. S. Willard, General Topology, Addison - Wesley, Reading, Mass, USA (1970).
Index Terms

Computer Science
Information Sciences

Keywords

αψ-p-open sober (αψ p)-R0 D(αψ p) -set (αψ p)-D0 (αψ p)-D1 (αψ p)-D2