CFP last date
20 January 2025
Reseach Article

Total Edge Irregularity Strength of Butterfly Networks

by Indra Rajasingh, Bharati Rajan, S. Teresa Arockiamary
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 49 - Number 3
Year of Publication: 2012
Authors: Indra Rajasingh, Bharati Rajan, S. Teresa Arockiamary
10.5120/7607-0642

Indra Rajasingh, Bharati Rajan, S. Teresa Arockiamary . Total Edge Irregularity Strength of Butterfly Networks. International Journal of Computer Applications. 49, 3 ( July 2012), 19-22. DOI=10.5120/7607-0642

@article{ 10.5120/7607-0642,
author = { Indra Rajasingh, Bharati Rajan, S. Teresa Arockiamary },
title = { Total Edge Irregularity Strength of Butterfly Networks },
journal = { International Journal of Computer Applications },
issue_date = { July 2012 },
volume = { 49 },
number = { 3 },
month = { July },
year = { 2012 },
issn = { 0975-8887 },
pages = { 19-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume49/number3/7607-0642/ },
doi = { 10.5120/7607-0642 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:45:20.292656+05:30
%A Indra Rajasingh
%A Bharati Rajan
%A S. Teresa Arockiamary
%T Total Edge Irregularity Strength of Butterfly Networks
%J International Journal of Computer Applications
%@ 0975-8887
%V 49
%N 3
%P 19-22
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Given a graph G (V, E) a labeling ¶: VÈE®{1, 2… k} is called an edge irregular total k-labeling if for every pair of distinct edges uv and xy, ¶(u) + ¶(uv) + ¶(v) ¹ ¶(x) + ¶(xy) + ¶(y). The minimum k for which G has an edge irregular total k-labeling is called the total edge irregularity strength of G. In this paper we examine the butterfly network which is a well known interconnection network, and obtain its total edge irregularity strength.

References
  1. M. Baca, S. Jendrol, M. Miller, and J. Ryan, On irregular total labelings, Discrete Math 307(2007), 1378- 1388.
  2. S. Brandt, J. Miskuf, and D. Rautenbach, On a conjecture about edge irregular total labelings, J. Graph Theory, 57 (2008), 333-343.
  3. G. Chartrand, M. Jacobson, J. Lehel, O. Oellermann, S. Ruiz, and F. Saba, Irregular networks, Congr. Numer. , 64(1988) 187-192.
  4. J. A. Gallian, A Dynamic survey of graph labeling, The Electronic journal of Combinatorics 15(2011), #DS6.
  5. J. Ivan?co and S. Jendrol', Total edge irregularity strength of trees, Discuss Math Graph Theory 26(2006), 449-456.
  6. S. Jendrol, J. Missuf, and R. Sotak, Total edge irregularity strength of complete graphs and complete bipartite graphs, Elec. Notes Discr. Math. , 28(2007), 281-285.
  7. Junming Xu, Topological Structure and Analysis of Interconnection Networks China, (2001).
  8. X. Liu and Q. P. Gu: Multicasts on WDM All- Optical butterfly Networks: Journal of Information Science and Engineering, 18(2002), 1049-1058.
  9. P. Manuel, M. I. Abd-El-Barr, I. Rajasingh and B. Rajan: An Efficient Representation of Benes Networks its applications: Proc. Of the sixteenth Australasian Workshop on combinatorial algorithms, Ballarat, Australia, (2005), 217-230.
Index Terms

Computer Science
Information Sciences

Keywords

Irregular Total Labeling Interconnection Networks Butterfly Networks Labeling Irregularity strength