CFP last date
20 January 2025
Reseach Article

Pattern Recognition using Multilevel Wavelet Transform

by Vinayak D. Shinde, Vijay M. Mane
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 49 - Number 2
Year of Publication: 2012
Authors: Vinayak D. Shinde, Vijay M. Mane
10.5120/7598-0300

Vinayak D. Shinde, Vijay M. Mane . Pattern Recognition using Multilevel Wavelet Transform. International Journal of Computer Applications. 49, 2 ( July 2012), 11-14. DOI=10.5120/7598-0300

@article{ 10.5120/7598-0300,
author = { Vinayak D. Shinde, Vijay M. Mane },
title = { Pattern Recognition using Multilevel Wavelet Transform },
journal = { International Journal of Computer Applications },
issue_date = { July 2012 },
volume = { 49 },
number = { 2 },
month = { July },
year = { 2012 },
issn = { 0975-8887 },
pages = { 11-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume49/number2/7598-0300/ },
doi = { 10.5120/7598-0300 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:45:15.713653+05:30
%A Vinayak D. Shinde
%A Vijay M. Mane
%T Pattern Recognition using Multilevel Wavelet Transform
%J International Journal of Computer Applications
%@ 0975-8887
%V 49
%N 2
%P 11-14
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

An approach for feature extraction using wavelet transforms using its property of multilevel decomposition in pattern recognition application is proposed. The multilevel decomposition property of discrete wavelet transform provides texture information of an image at different resolutions. Iris recognition system using multilevel wavelet transform is explained. The technique developed here is implemented using three and four level decomposition of Discrete Wavelet Transform. Four level decomposition gives better results at increased threshold value. Reduced feature vector size improves the speed.

References
  1. Jain A. K. , Ross A, Prabhakar S. 2004, ?An introduction to biometric recognition, IEEE transactions on circuits and systems for video technology—special issue on image and video-based biometrics, vol. 14(1).
  2. S V Sheela and P A Vijaya. "Iris Recognition Methods – Survey". International Journal of Computer Applications 3(5):19–25, June 2010. Published By Foundation of Computer Science.
  3. Daugman J, "How iris recognition works", IEEE Transactions CSV, Vol. 14, No. 1, pp. 21-30, 2004.
  4. J. Daugman, "High Confidence Visual Recognition by a test of Statistical Independence", IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 15, No. 11, pp. 1148-1161,1993.
  5. J. Daugman, New Methods in Iris Recognition. "IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics". 37 (5), 1167-1175 (2007).
  6. W. W. Boles and B. Boashash , "A Human Identification Technique Using Images of the Iris and Wavelet transform",IEEE Transactions On Signal Processing, Vol. 46, No. 4, April 1998.
  7. Li Ma, Tieniu Tan, Yunhong Wang, Dexin Zhang, "Personal Identification based on Iris Texture Analysis", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 12, pp. 1519 – 1533, 2003.
  8. R. Wildes, J. Asmuth, G. Green, S. Hsu, R. Kolczynski, J. Matey, and S. McBride, "A machine-vision system for iris recognition", Machine Visual Application, Vol. 9, pp. 1-8, 1996.
  9. R. Wildes, "Iris recognition: an emerging biometric technology", IEEE Proceedings, Vol. 85, pp. 1348-1363, 1997.
  10. R. P. Wildes, J. C. Asmuth, G. L. Green, S. C. Hsu, R. J,Kolczynski, J. R. Matey, S. E. McBride, David Sarno_ Res. Center, Princeton, NJ, "A System for Automated Iris Recognition", Proceedings of the Second IEEE Workshop on Applications of Computer Vision, 1994.
  11. Prof. Mane Vijay M,Prof . S. M. Tayde, Prof. (Dr. ) Mrs. S. Subbaraman, "Efficient Identification of Humans by iris", International conference on signal and image processing ICSIP2009,Mysore ,pp. 12-14, Aug 2009.
  12. Chinese academy of sciences –institute of automation, "CASIA-irisV1, http://biometrics. idealtest. org.
  13. John Canny, "A computational approach to edge detection. " IEEE Transactions on PAMI, 8(6):679– 698, 1986.
  14. R. O. Duda and P. E. Hart, "Use of the Hough Transformation to Detect Lines and Curves in Pictures" Comm. ACM,vol . 15,No. 1,pp. 11-15(January 1972).
  15. Hugo Proenc¸a , Lu´?s A. Alexandre, "Iris Recognition: An Analysis of the Aliasing Problem in the Iris Normalization Stage" ,IEEE proceedings of 2006. International Conference on Computational Intellligence and Security-CIS 2006, Guangzhou,China,November 3-6,2006,vol. 2,pp. 1771-1774.
  16. R. C. Gonzalez,R. E. Woods "Digital Image Processing" second edition,Pearson Education. pp. 371-426.
  17. Bruno Garguet-Duport, Jacky Girel, Jean-Marc Chassery, and Guy Pautou"The Use of Multiresolution Analysis and Wavelets Transform for Merging SPOT Panchromatic and Multispectral Image Data" PE&RS September 1996,pp. 1057-1066.
  18. E. Y. Lam "Statistical modelling of the wavelet coefficients with different bases and decomposition levels" IEE Proc. -Vis. Image Signal Process. , Vol. 151, No. 3, June 2004,pp-203-206.
  19. Lenina Vithalrao Birgale,Manesh Kokare, "Iris recognition using discrete wavelet transform "International conference on digital image processing,2009. pp. 147-151.
  20. V. Balamurugan,P. Anandhakumar "multiresolution image indexing technique based on texture features using 2D wavelet transform",Europian journal of scientific research, vol. 48,N0. 4,(2011). pp 648-664.
Index Terms

Computer Science
Information Sciences

Keywords

Biometrics DWT Euclidean distance Feature vector FAR FRR RAR Normalisation Segmentation