CFP last date
20 December 2024
Reseach Article

Solution of a Birkhoff Interpolation Problem by a Special Spline Function

by Ambrish Kumar Pandey, K. B. Singh, Qazi Shoeb Ahmad
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 48 - Number 9
Year of Publication: 2012
Authors: Ambrish Kumar Pandey, K. B. Singh, Qazi Shoeb Ahmad
10.5120/7376-0174

Ambrish Kumar Pandey, K. B. Singh, Qazi Shoeb Ahmad . Solution of a Birkhoff Interpolation Problem by a Special Spline Function. International Journal of Computer Applications. 48, 9 ( June 2012), 22-27. DOI=10.5120/7376-0174

@article{ 10.5120/7376-0174,
author = { Ambrish Kumar Pandey, K. B. Singh, Qazi Shoeb Ahmad },
title = { Solution of a Birkhoff Interpolation Problem by a Special Spline Function },
journal = { International Journal of Computer Applications },
issue_date = { June 2012 },
volume = { 48 },
number = { 9 },
month = { June },
year = { 2012 },
issn = { 0975-8887 },
pages = { 22-27 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume48/number9/7376-0174/ },
doi = { 10.5120/7376-0174 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:43:38.099271+05:30
%A Ambrish Kumar Pandey
%A K. B. Singh
%A Qazi Shoeb Ahmad
%T Solution of a Birkhoff Interpolation Problem by a Special Spline Function
%J International Journal of Computer Applications
%@ 0975-8887
%V 48
%N 9
%P 22-27
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we have discussed a special lacunary interpolation problem in which the function values, first derivatives at the nodes and the third derivatives at any point ? (0 in between the nodes are prescribed. We have solved the unique existence and convergence problems, using spline functions. As this holds for any ? (0 we named it a generalized problem.

References
  1. Burkett, J. and Verma, A. K. (June-1995) On Birkhoff Interpolation (0;2) case, Aprox. Theory and its Appl. , 11;2.
  2. Chawala, M. M. , Jain, M. K. and Subramanian, R. (1990) On numerical Integration of a singular two-point boundary value problem Inter. J. Computer. Math. Vol 31, 187-194.
  3. Cheney, E. W. (1966) Interpolation to approximation Theory, McGraw Hill, New York.
  4. Davydov, O. (1997) On almost Interpolation, Journal of Approx. Theory 91(3), 396-418.
  5. Goodman, T. N. T. ; Ivanov, K. G. ; Sharma, A. (1996) Hermite interpolation in the roots of unity, Journal of Approx. Theory, 84(1), 41-60.
  6. Jhunjhunwala, N. and Prasad, J. (1994) on some regular and singular problems of Birkhoff interpolation, Internet. J. Math. & Math. Sci. 17 No. 2, 217-226.
  7. Lorentz, G. G. , (1973) Approximation Theory, Academic Press Inc. New York.
  8. Lorentz, G. G. , Jetter, K. Riemenschneider, S. D. (1983) Birkhoff Interpolation, Addison-Wesley Publishing.
  9. Neumann, E. (1981) cubic spline with given values of the second derivatives at the knots, Demonstratio Mathematica XIV, No. 1, 155-125.
  10. Saxena, A. , Singh Kulbhushan; Lacunary Interpolation by Quintic splines, Vol. 66 No. 1-4 (1999), 0-00, Journal of Indian Mathematical Society, Vadodara, India.
  11. Schoenberg, I. J. (1972) Notes on spline functions, I, Koninkl. Nederl. Akademievan Westenschappen-Amesterdam, Series A 75, No. 5 and Indag. Math. 34 No. 5.
Index Terms

Computer Science
Information Sciences

Keywords

Lacunary Interpolation Spline Functions