CFP last date
20 December 2024
Reseach Article

HSV Color Motif Co-Occurrence Matrix for Content based Image Retrieval

by K. N. Prakash, K. Satya Prasad
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 48 - Number 16
Year of Publication: 2012
Authors: K. N. Prakash, K. Satya Prasad
10.5120/7430-0337

K. N. Prakash, K. Satya Prasad . HSV Color Motif Co-Occurrence Matrix for Content based Image Retrieval. International Journal of Computer Applications. 48, 16 ( June 2012), 8-14. DOI=10.5120/7430-0337

@article{ 10.5120/7430-0337,
author = { K. N. Prakash, K. Satya Prasad },
title = { HSV Color Motif Co-Occurrence Matrix for Content based Image Retrieval },
journal = { International Journal of Computer Applications },
issue_date = { June 2012 },
volume = { 48 },
number = { 16 },
month = { June },
year = { 2012 },
issn = { 0975-8887 },
pages = { 8-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume48/number16/7430-0337/ },
doi = { 10.5120/7430-0337 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:44:12.358595+05:30
%A K. N. Prakash
%A K. Satya Prasad
%T HSV Color Motif Co-Occurrence Matrix for Content based Image Retrieval
%J International Journal of Computer Applications
%@ 0975-8887
%V 48
%N 16
%P 8-14
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, HSV based color motif co-occurance matrix (HSV-Motif) is proposed for content based image retrieval (CBIR). The HSV-Motif is proposed in contrast to the RGB based color motif co-occurance matrix (RGB-Motif). First the RGB (red, green, and blue) image is converted into HSV (hue, saturation, and value) image, then the H and S images are used for histogram calculation by quantizing into Q levels and the local region of V (value) image is represented by sevn motif, which are evaluated by taking into consideration of local difference between the pixels. Motif extracts the information based on distribution of edges in an image. Two experiments have been carried out for proving the worth of our algorithm. It is further mentioned that the database considered for experiments are Corel 1000 database (DB1), and MIT VisTex database (DB2). The results after being investigated show a significant improvement in terms of their evaluation measures as compared to RGB-Motif.

References
  1. Y. Rui and T. S. Huang, Image retrieval: Current techniques, promising directions and open issues, J. . Vis. Commun. Image Represent. , 10 (1999) 39–62.
  2. A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, Content-based image retrieval at the end of the early years, IEEE Trans. Pattern Anal. Mach. Intell. , 22 (12) 1349–1380, 2000.
  3. M. Kokare, B. N. Chatterji, P. K. Biswas, A survey on current content based image retrieval methods, IETE J. Res. , 48 (3&4) 261–271, 2002.
  4. Ying Liu, Dengsheng Zhang, Guojun Lu, Wei-Ying Ma, Asurvey of content-based image retrieval with high-level semantics, Elsevier J. Pattern Recognition, 40, 262-282, 2007.
  5. M. J. Swain and D. H. Ballar, Indexing via color histograms, Proc. 3rd Int. Conf. Computer Vision, Rochester Univ. , NY, (1991) 11–32.
  6. M. Stricker and M. Oreng, Similarity of color images, Proc. SPIE, Storage and Retrieval for Image and Video Databases, (1995) 381–392.
  7. G. Pass, R. Zabih, and J. Miller, Comparing images using color coherence vectors, Proc. 4th ACM Multimedia Conf. , Boston, Massachusetts, US, (1997) 65–73.
  8. J. Huang, S. R. Kumar, and M. Mitra, Combining supervised learning with color correlograms for content-based image retrieval, Proc. 5th ACM Multimedia Conf. , (1997) 325–334.
  9. Z. M. Lu and H. Burkhardt, Colour image retrieval based on DCT domain vector quantization index histograms, J. Electron. Lett. , 41 (17) (2005) 29–30.
  10. J. R. Smith and S. F. Chang, Automated binary texture feature sets for image retrieval, Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Columbia Univ. , New York, (1996) 2239–2242.
  11. H. A. Moghaddam, T. T. Khajoie, A. H Rouhi and M. Saadatmand T. , Wavelet Correlogram: A new approach for image indexing and retrieval, Elsevier J. Pattern Recognition, 38 (2005) 2506-2518.
  12. H. A. Moghaddam and M. Saadatmand T. , Gabor wavelet Correlogram Algorithm for Image Indexing and Retrieval, 18th Int. Conf. Pattern Recognition, K. N. Toosi Univ. of Technol. , Tehran, Iran, (2006) 925-928.
  13. A. Ahmadian, A. Mostafa, An Efficient Texture Classification Algorithm using Gabor wavelet, 25th Annual international conf. of the IEEE EMBS, Cancun, Mexico, (2003) 930-933.
  14. H. A. Moghaddam, T. T. Khajoie and A. H. Rouhi, A New Algorithm for Image Indexing and Retrieval Using Wavelet Correlogram, Int. Conf. Image Processing, K. N. Toosi Univ. of Technol. , Tehran, Iran, 2 (2003) 497-500.
  15. M. Saadatmand T. and H. A. Moghaddam, Enhanced Wavelet Correlogram Methods for Image Indexing and Retrieval, IEEE Int. Conf. Image Processing, K. N. Toosi Univ. of Technol. , Tehran, Iran, (2005) 541-544.
  16. M. Saadatmand T. and H. A. Moghaddam, A Novel Evolutionary Approach for Optimizing Content Based Image Retrieval, IEEE Trans. Systems, Man, and Cybernetics, 37 (1) (2007) 139-153.
  17. L. Birgale, M. Kokare, D. Doye, Color and Texture Features for Content Based Image Retrieval, International Conf. Computer Grafics, Image and Visualisation, Washington, DC, USA, (2006) 146 – 149.
  18. M. Subrahmanyam, A. B. Gonde and R. P. Maheshwari, Color and Texture Features for Image Indexing and Retrieval, IEEE Int. Advance Computing Conf. , Patial, India, (2009) 1411-1416.
  19. Subrahmanyam Murala, R. P. Maheshwari, R. Balasubramanian, A Correlogram Algorithm for Image Indexing and Retrieval Using Wavelet and Rotated Wavelet Filters, Int. J. Signal and Imaging Systems Engineering.
  20. T. Ojala, M. Pietikainen, D. Harwood, A comparative sudy of texture measures with classification based on feature distributions, Elsevier J. Pattern Recognition, 29 (1): 51-59, 1996.
  21. T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell. , 24 (7): 971-987, 2002.
  22. M. Pietikainen, T. Ojala, T. Scruggs, K. W. Bowyer, C. Jin, K. Hoffman, J. Marques, M. Jacsik, W. Worek, Overview of the face recognition using feature distributions, Elsevier J. Pattern Recognition, 33 (1): 43-52, 2000.
  23. T. Ahonen, A. Hadid, M. Pietikainen, Face description with local binary patterns: Applications to face recognition, IEEE Trans. Pattern Anal. Mach. Intell. , 28 (12): 2037-2041, 2006.
  24. G. Zhao, M. Pietikainen, Dynamic texture recognition using local binary patterns with an application to facial expressions, IEEE Trans. Pattern Anal. Mach. Intell. , 29 (6): 915-928, 2007.
  25. M. Heikkil;a, M. Pietikainen, A texture based method for modeling the background and detecting moving objects, IEEE Trans. Pattern Anal. Mach. Intell. , 28 (4): 657-662, 2006.
  26. X. Huang, S. Z. Li, Y. Wang, Shape localization based on statistical method using extended local binary patterns, Proc. Inter. Conf. Image and Graphics, 184-187, 2004.
  27. M. Heikkila, M. Pietikainen, C. Schmid, Description of interest regions with local binary patterns, Elsevie J. Pattern recognition, 42: 425-436, 2009.
  28. M. Li, R. C. Staunton, Optimum Gabor filter design and local binary patterns for texture segmentation, Elsevie J. Pattern recognition, 29: 664-672, 2008.
  29. B. Zhang, Y. Gao, S. Zhao, J. Liu, Local derivative pattern versus local binary pattern: Face recognition with higher-order local pattern descriptor, IEEE Trans. Image Proc. , 19 (2): 533-544, 2010.
  30. A. Abdullah, R. C. Veltkamp and M. A. Wiering, Fixed Partitioning and salient points with MPEG-7 cluster correlogram for image categorization, Pattern Recognition, 43, (2010) 650-662.
  31. N. Jhanwara, S. Chaudhuri, G. Seetharamanc, and B. Zavidovique, Content based image retrieval using motif co-occurrence matrix, Image and Vision Computing 22, (2004) 1211–1220.
  32. C H Lin, Chen R T, Chan Y K A. , Smart content-based image retrieval system based on color and texture feature, Image and Vision Computing 27 (2009) 658-665.
  33. Corel 1000 and Corel 10000 image database. [Online]. Available: http://wang. ist. psu. edu/docs/related. shtml.
  34. MIT Vision and Modeling Group, Vision Texture. [Online]. Available: http://vismod. media. mit. edu/pub/
Index Terms

Computer Science
Information Sciences

Keywords

Color Texture Feature Extraction Local Binary Patterns Image Retrieval