We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

AR Modeling for Cardiac Arrhythmia Classification using MLP Neural Networks

by A.ouelli, B.elhadadi, H.aissaoui, B.bouikhalene
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 47 - Number 24
Year of Publication: 2012
Authors: A.ouelli, B.elhadadi, H.aissaoui, B.bouikhalene
10.5120/7508-0638

A.ouelli, B.elhadadi, H.aissaoui, B.bouikhalene . AR Modeling for Cardiac Arrhythmia Classification using MLP Neural Networks. International Journal of Computer Applications. 47, 24 ( June 2012), 44-51. DOI=10.5120/7508-0638

@article{ 10.5120/7508-0638,
author = { A.ouelli, B.elhadadi, H.aissaoui, B.bouikhalene },
title = { AR Modeling for Cardiac Arrhythmia Classification using MLP Neural Networks },
journal = { International Journal of Computer Applications },
issue_date = { June 2012 },
volume = { 47 },
number = { 24 },
month = { June },
year = { 2012 },
issn = { 0975-8887 },
pages = { 44-51 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume47/number24/7508-0638/ },
doi = { 10.5120/7508-0638 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:42:45.281821+05:30
%A A.ouelli
%A B.elhadadi
%A H.aissaoui
%A B.bouikhalene
%T AR Modeling for Cardiac Arrhythmia Classification using MLP Neural Networks
%J International Journal of Computer Applications
%@ 0975-8887
%V 47
%N 24
%P 44-51
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we propose a three stage technique for cardiac arrhythmia classification. This method includes a de-noising module, a feature extraction module and a classification module. In the first module we investigate the application of a FIR least squares filter for noise reduction of the electrocardiogram (ECG) signals. The feature extraction module explores the ability of autoregressive model (AR) to extract relevant features from one-lead electrocardiogram signals in order to classify certain cardiac arrhythmias. Then a number of multilayer perceptron (MLP) neural networks with different number of layers and seven training algorithms are designed. The performances of the networks for speed of convergence and accuracy classifications are evaluated for various ECG data types including normal sinus rhythm, atrial premature contraction, premature ventricular contraction, ventricular tachycardia, ventricular fibrillation and Supraventricular tachycardia obtained from the MIT-BIH database. Among the different training algorithms, the resilient back-propagation (RP) algorithm illustrated the best convergence rate and the Levenberg–Marquardt (LM) algorithm achieved the best overall detection accuracy. The classification accuracies of the six types of arrhythmia were 98. 7% to 100% which is a significant improvement.

References
  1. G. D. Clifford, F. Azuaje, P. E. McShary, Advanced Methods and Tools for ECG data Analysis, Artech House, Norwood, MA 02062, 2006.
  2. H. G. Hosseini, K. J. Reynolds, D. Powers, A multi-stage neural network classifier for ECG events, in: Proceedings of the 23rd International Conference on IEEE EMBS, vol. 2, 2001, pp. 1672-1675.
  3. O. T. Inan, L. Giovangrandi, G. T. A. Kovacs, Robust neural-networkbased classification of premature ventricular contractions using wavelet transform and timing interval features, IEEE Trans. Biomed. Eng. 53 (2006) 2507-2515.
  4. S. N. Yu, K. T. Chou, Selection of significant for ECG beat classification, Expert Syst. Appl. 36 (2009) 2088-2096.
  5. U. R. Acharya et al. , Automatic identification of cardiac health using modeling techniques: a comparative study, Inform. Sci. 178 (2008) 4571-4582.
  6. C. H. Lin, Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier, Comput. Math. Appl. 55 (2008) 680-690.
  7. E. D. Ubeyli. Features for analysis of electrocardiographic changes in partial epileptic patients, Expert Syst. Appl. 36 (2009) 6780-6789.
  8. Mukhopadhyay S, Sircar P: Parametric modelling of ECG signal. Med Biol Eng Comp 1996, 34:171-173
  9. Pinna GD, Maestri R, Cesare AD: Application of time series spectral analysis theory: analysis of cardiovascular variability signals. Med Biol Eng Comp 1996, 34:142-148.
  10. Bennett FM, Chrisstini DJ, Ahmed H, Lutchen K: Time series modeling of heart rate dynamics. Proc Comp Cardiol 1993, 273-276.
  11. Arnold M, Miltner WHR, Witte H: Adaptive AR modeling of nonstationary time series by means of Kalman filtering. IEEE Trans Biomed Eng 1998, 45:553-562.
  12. Mainardi LT, Bianchi AM, Baselli G, Cerutti S: Pole tracking algorithms for the extraction of time-variant heart rate variability spectral parameters. IEEE Trans Biomed Eng 1995, 42:250-258.
  13. Mehmet Engin: ECG beat classification using neuro fuzzy network. Pattern Recognition Letters 25 (2004) 1715-1722.
  14. Dingfei Ge, Narayanan Srinivasan and Shankar M Krishnan: Cardiac arrhythmia classification using autoregressive modeling. BioMedical Engineering OnLine 2002, 1:5.
  15. A. OUELLI, B. ELHADADI, H. AISSAOUI, B. BOUIKHALENE: AR Modeling for Automatic Cardiac Arrhythmia Diagnosis Using QDF Based Algorithm. IJARCSSE, Vol. 2, issue5, May 2012, 402-407.
  16. Massachusetts Institute of Technology, MIT-BIH arrhythmia database. [http://www. physionet. org /physiobank/database/mitdb].
  17. Massachusetts Institute of Technology, CU database. [http://www. physionet. org / physiobank /database/cudb].
  18. Massachusetts Institute of Technology, MIT-BIH Supraventricular Arrhythmia database. [http://www. physionet. org / physiobank /database /svdb]
  19. Ham F M, Han S. Classification of cardiac arrhythmias using fuzzy ARTMAP. IEEE Transactions on Biomedical Engineering, 1996, 43(4): 425-430.
  20. Dingfei Ge, HOU Bei-Ping and XIANG Xin-Jian: Study of Feature Extraction Based on Autoregressive Modeling in ECG automatic diagnosis. Acta Automatica Sinika, Vol. 33, N. 5, 462-466. May 2007.
  21. M. L. Talbi, A. Charaf. PVC discrimination using the QRS power spectrum and self–organizing maps. Computer methods and programs in biomedicine. 2009, 223-231.
  22. Fukunaga K. Introduction to Statistical Pattern Recognition. New York: Academic Press, 1990, 153-154 and 400-409.
  23. Ge Ding-Fei, Xia Shun-Ren. Application of AR model in telediagnosis of cardiac arrhythmias. Chinese Journal of Biomedical Engineering, 2004, 23(3): 222-229.
  24. Mi Hye Song, J Lee, S P Cho. Support vector machine based arrhythmia classification using reduced features. International journal of control, automation, and system, vol 3, no. 4, pp 571-579,December 2005.
Index Terms

Computer Science
Information Sciences

Keywords

Autoregressive Model Cardiac Arrhythmia Ecg Features Ecg Classification Mlp Rp Algorithm Lm Algorithm Neural Networks Mit-bih Database