CFP last date
20 January 2025
Reseach Article

Intelligent ECG Signal Noise Removal using PSONN

by Sara Moein, Rajasvaran Logeswaran
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 45 - Number 6
Year of Publication: 2012
Authors: Sara Moein, Rajasvaran Logeswaran
10.5120/6783-9085

Sara Moein, Rajasvaran Logeswaran . Intelligent ECG Signal Noise Removal using PSONN. International Journal of Computer Applications. 45, 6 ( May 2012), 9-17. DOI=10.5120/6783-9085

@article{ 10.5120/6783-9085,
author = { Sara Moein, Rajasvaran Logeswaran },
title = { Intelligent ECG Signal Noise Removal using PSONN },
journal = { International Journal of Computer Applications },
issue_date = { May 2012 },
volume = { 45 },
number = { 6 },
month = { May },
year = { 2012 },
issn = { 0975-8887 },
pages = { 9-17 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume45/number6/6783-9085/ },
doi = { 10.5120/6783-9085 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:36:53.091905+05:30
%A Sara Moein
%A Rajasvaran Logeswaran
%T Intelligent ECG Signal Noise Removal using PSONN
%J International Journal of Computer Applications
%@ 0975-8887
%V 45
%N 6
%P 9-17
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The electrocardiogram (ECG) signal is susceptible to noise and artifacts and it is essential to remove the noise in order to support any decision making for specialist and automatic heart disorder diagnosis systems. In this paper, the use of Particle Swarm Optimization Neural Network (PSONN) for automatically identifying the cutoff frequency of ECG signal for low-pass filtering is investigated. Generally, the spectrums of the ECG signal are extracted from four classes: normal sinus rhythm, atrial fibrillation, arrhythmia and supraventricular. Baseline wander is removed using the moving median filter. A dataset of the extracted features of the ECG spectrums is used to train the PSONN. The performance of the PSONN with various parameters is investigated. The PSONN-identified cutoff frequency is applied to a Finite Impulse Response (FIR) filter and the resulting signal is evaluated against the original clean and conventional filtered ECG signals. The results show that the intelligent PSONN-based system successfully denoised the ECG signals more effectively than the conventional method.

References
  1. Karl G. R. , Isis A. W. , Roberto L. , Hakan N. , Fetal ECG waveform analysis, Best Practice & Research: Clinical Obstet Gynae, 2004; 18 (3), pp. 485-514.
  2. Robert M. , Ian R. G. The effects of noise on computerized electrocardiogram measurements, J Electrocardiol 2006; 39 (4), pp. 165-173.
  3. Behbahani S. , Investigation of adaptive filtering for noise cancellation in ECG signals, 2nd Intl Multi-Symp Comp Comput Sci, IEEE Computer Society, 2007; pp. 144-149.
  4. Yan S. , Kap L. C. , Shankar M. K. , ECG signal conditioning by morphological filtering, J Comp Bio, 2002; 32 (16), pp. 465-479.
  5. Fitzgibbon E. , Berger R. , Tsitlik J. , Halperin H. R. , Determination of the noise source in the electrocardiogram during cardiopulmonary resuscitation, Med Care Medicine, 2002; 30 (4), pp. 148-153.
  6. Losada R. A. , Design finite impulse response digital filters, Part II. Microwaves & RF, 2004; 43, pp. 70-84.
  7. Orfanidis S. J. , Introduction to Signal Processing, Upper Saddle River, New Jersey: Prentice Hall; 1996.
  8. Lian Y. , Hoo P. C. , Digital elliptic filter application for noise reduction in ECG signal, WSEAS Trans Electron, 2006; 3 (1), pp. 65-70.
  9. Engin M. , ECG beat classification using neuro-fuzzy network, Pattern Recogn Lett, 2004; 25 (15), pp. 1715-1722.
  10. Minami K. , Nakajima H. , Toyoshima T. , Real-time discrimination of ventricular tachyarrhythmia with Fourier transform neural network, IEEE Trans Biomed Eng, 1999; 46 (2), pp. 179–185.
  11. Lin H. , Wensheng H. , Xiaolin Z. , Chenglin P. , Recognition of ECG patterns using artificial neural network, Sixth IEEE Intl Conf Intell, Sys Design and Appl (ISDA'06), Jinan, 2006; pp. 477-481.
  12. Naghsh-Nilchi A. R. , Kadkhodamohammadi A. R. , Cardiac arrhythmias classification method based on MUSIC morphological descriptors, and neural network, EURASIP J Adv Sig Process, 2008, Article ID 935907.
  13. Chawla M. P. S. , A comparative analysis of principal component and independent component techniques for electrocardiograms, Neural Comput & Applic, 2009, 18 (6), pp. 539-556.
  14. Zhang D. , Sui W. , Noise Reduction of ECG Signal Based on Morphological Filtering and WT, Key Eng Mat, 2010; 439-440, pp. 12-16.
  15. Sotos J. M. , Sanchez C. , Mateo J. , Alcaraz R. , Vaya C. , Rieta J. J. , Neural networks based approach to remove baseline drift in biomedical signals, 11th Mediterr Conf Med Biomed Eng Comput 2007 IFMBE Proc, 2007;16 (2), pp. 90-93.
  16. Sotos J. M. , Meléndez C. S. , Salort C. V. , Abad R. C. , Ibáñez J. J. R. , A learning based Widrow-Hoff Delta algorithm for noise reduction in biomedical signals, Bio-inspired Modeling of Cognitive Tasks, LNCS, 2007; 4527, pp. 377-386.
  17. Sadik K. , Mustafa O. , Atrial fibrillation classification with artificial neural networks, Pat Recogn, 2007, 40 (11), pp. 2967-2973
  18. Poungponsri S. , Yu X. H. , Electrocardiogram (ECG) signal modeling and noise reduction using wavelet neural networks, Proc IEEE Intl Conf Autom Logistics, Shenyang, China, 2009; pp. 394-398.
  19. Mehmet K. , Ali. N. A new arrhythmia clustering technique based on Ant Colony Optimization, Biomed Inform, 2008; 41 (6); pp. 874-881.
  20. Ferguson D. , Particle Swarm, University of Victoria, Canada; 2004.
  21. Saramaki T. , Mitra S. K. , Finite impulse response filter design, Handbook for Digital Signal Processing, New York: Wiley-Interscience; 1993.
  22. Physionet, Physiologic signal archives for biomedical research, A database for heart signals, Cambridge, MA, (Updated: 27 April 2009) www. physionet. org/physiobank, [accessed on: 10 September 2010].
  23. Roger A. , Hans-Jakob S. , Meet the challenge of high-pass filter and ST-segment requirements with a DC-coupled digital electrocardiogram amplifier, J Electrocardiol, 2009; 46 (6), pp. 574-579.
  24. Ziarani A. K. , Konrad A. , A nonlinear adaptive method of elimination of power line interferences in ECG signals, IEEE Trans Biomed Eng, 2004; 49 (6), pp. 540-547.
  25. Ling B. W. K. , Ho C. Y. F. , Lam H. K. , Wong T. P. L. , Chan A. Y. P. , Tam P. K. S. , Fuzzy rule based multiwavelet ECG signal denoising, IEEE World Cong Comput Intell, Hong Kong, 2008; pp. 1064-1068.
  26. Willems J. L. , Arnaud P. , A reference data base for multi-lead electrocardiographic computer measurement programs, J Am Coll Cardiol, 1987; 10 (6), pp. 1313-1321.
  27. Chang K. M. , Arrhythmia ECG Noise Reduction by Ensemble Empirical Mode Decomposition, Sensors in Biomechanics and Biomedicine, 2010; pp. 6064-6080.
  28. Yan S. , Kap L. C. , Shankar M. K. , ECG signal conditioning by morphological filtering, Comput in Bio Med, 2002; 32 (6), pp. 465-479.
  29. Murray R. S. , Larry J. S. , Schaum's Outline of Statistics, 3rd edition, Mc Graw Hill Book Company, Singapore; 2003.
  30. Eberhart, R. , Shi, Y. , Particle Swarm Optimization: Developments, Application and Resources, IEEE Congr. Evol. Comput. , Seoul, Korea , May, 2001; pp. 81-86.
  31. Van d. B. , Engelbrecht A. P. , Cooperative learning in neural networks using Particle Swarm Optimizers, South African Comput, 2000; 26, pp. 84-90.
  32. Ying P. C. , Pei J. , Analysis of particle interaction in particle swarm optimization, Theoretical Comput Sci, 2010, 411 (21), pp. 2101-2115.
  33. Mehmet K. , Berat D. , ECG beat classi?cation using particle swarm optimization and radial basis function neural network, Expert Sys with Appl, 2010, 37 (12), pp. 7563-7569.
  34. Hassoun M. H. , Fundamentals of Artificial Neural Network, MIT; 1995.
  35. Sornmo L. , Laguna P. , Bioelectrical Signal Processing in Cardiac and Neurological Applications, Academic Press, 688 pages; 2005.
  36. Konstantinos N. P. , Dimitrios H. , Jimmy K. M. L. , ECG biometric recognition without fiducial detection, IEEE Biometrics Symp, Baltimore, MD; 2006.
  37. Gerd W. , Manuel S. , Dieter K. , Ralf D. B. , Clemens E. , Veri?cation of humans using the electrocardiogram, Pat Recogn Let, 2011, 28 (10), pp. 1172-1175.
Index Terms

Computer Science
Information Sciences

Keywords

Cutoff Frequency Particle Swarm Optimization Neural Network (psonn) Low-pass Filtering Finite Impulse Response (fir)