We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Comparative Study of Skeletal Bone Age Assessment Approaches using Partitioning Technique

by P. Thangam, K. Thanushkodi, T. V. Mahendiran
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 45 - Number 18
Year of Publication: 2012
Authors: P. Thangam, K. Thanushkodi, T. V. Mahendiran
10.5120/7017-9642

P. Thangam, K. Thanushkodi, T. V. Mahendiran . Comparative Study of Skeletal Bone Age Assessment Approaches using Partitioning Technique. International Journal of Computer Applications. 45, 18 ( May 2012), 15-20. DOI=10.5120/7017-9642

@article{ 10.5120/7017-9642,
author = { P. Thangam, K. Thanushkodi, T. V. Mahendiran },
title = { Comparative Study of Skeletal Bone Age Assessment Approaches using Partitioning Technique },
journal = { International Journal of Computer Applications },
issue_date = { May 2012 },
volume = { 45 },
number = { 18 },
month = { May },
year = { 2012 },
issn = { 0975-8887 },
pages = { 15-20 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume45/number18/7017-9642/ },
doi = { 10.5120/7017-9642 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:37:55.916311+05:30
%A P. Thangam
%A K. Thanushkodi
%A T. V. Mahendiran
%T Comparative Study of Skeletal Bone Age Assessment Approaches using Partitioning Technique
%J International Journal of Computer Applications
%@ 0975-8887
%V 45
%N 18
%P 15-20
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents the comparative study on four computerized skeletal Bone Age Assessment (BAA) methods using the partitioning technique. The four systems studied work according to the renowned Tanner and Whitehouse (TW2) method, based on the Region of Interest (ROI) taken from the wrist bones. The systems ensure accurate and robust BAA for the age range 0-10 years for both girls and boys. Given a left hand-wrist radiograph as input, they estimate the bone age by deploying remarkable techniques for pre-processing, feature extraction, and classification. The four BAA systems differ from each other in the type of ROI used, the feature extraction techniques and finally the classification. The systems output the age class to which the radiograph is categorized (Class A – Class J), which is mapped onto the final bone age. The systems were studied and their performances were compared by varying the partition of the train and test data sets. The systems were judged based on the results obtained from two radiologists.

References
  1. Vicente Gilsanz, and Osman Ratib. 2005. Hand Bone Age – A Digital Atlas of Skeletal Maturity, Springer-Verlag.
  2. Concetto Spampinato. 1995. Skeletal Bone Age Assessment. University of Catania, Viale Andrea Doria, 6 95125.
  3. R. K. Bull, P. D. Edwards, P. M. Kemp, S. Fry, I. A. Hughes. 1999. Bone Age Assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods. Arch. Dis. Child, vol. 81, pp. 172-173.
  4. J. M. Tanner, R. H. Whitehouse. 1975. Assessment of Skeletal Maturity and Prediction of Adult Height (TW2 method). Academic Press.
  5. Sankar K. Pal, and Robert A. King. 1983. On Edge Detection of X-Ray Images using Fuzzy Sets. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 5, no. 1, pp. 69-77.
  6. A. Kwabwe, S. K. Pal, R. A. King. 1985. Recognition of bones from rays of the hand. International journal of Systems and Science. 16(4): 403-413.
  7. Amita Pathak, S. K. Pal. 1986. "Fuzzy Grammars in Syntactic Recognition of Skeletal Maturity from X-Rays", IEEE Trans. on Systems, Man, and Cybernetics, vol. 16, no. 5.
  8. David J. Michael, Alan C. Nelson. 1989. HANDX: A Model-Based System for Automatic Segmentation of Bones from Digital Hand Radiographs. IEEE Trans. on Medical Imaging, vol. 8, no. 1.
  9. E. Pietka, M. F. McNitt-Gray, and H. K. Huang. 1991. Computer-assisted phalangeal analysis in skeletal age assessment. IEEE Trans. Med. Imag. , vol. 10, pp. 616–620.
  10. S. M. Garn, K. P. Hertzog, A. K. Poznanski, and J. M. Nagy. 1972. Metacarpophalangeal length in the evaluation of skeletal malformation. Radiology, vol. 105, pp. 375-381.
  11. J. M. Tanner and R. D. Gibbons. 1994. Automatic bone age measurement using computerized image analysis. J. Ped. Endocrinol. , vol. 7, pp. 141–145.
  12. E. Pietka, L. Kaabi, M. L. Kuo, and H. K. Huang. 1993. Feature extraction in carpal-bone analysis. IEEE Trans. Med. Imag. , vol. 12, pp. 44–49.
  13. S. N. C. Cheng, H. Chen, L. T. Niklason, R. S. Alder. Automated segmentation of regions on hand radiographs. Med. Phy. , vol. 21, pp. 1293-1300.
  14. N. M. Drayer and L. A. Cox. 1994. Assessment of bone ages by the Tanner-Whitehouse method using a computer-aided system, Acta Paediatric Suppl. , pp. 77-80.
  15. Al-Taani A. T. , Ricketts I. W. , Cairns A. Y. 1996. Classification Of Hand Bones For Bone Age Assessment. Proceedings of the Third IEEE International Conference on Electronics, Circuits, and Systems, ICECS '96. , pp. 1088-1091.
  16. Wastl S. , Dickhaus H. 1996. Computerized Classification of Maturity Stages of Hand Bones of Children and Juveniles. Proceedings of 18th IEEE International Conference EMBS, pp. 1155-1156.
  17. Mahmoodi S. , Sharif B. S. , Chester E. G. , Owen J. P. , Lee R. E. J. 1997. Automated vision system for skeletal age assessment using knowledge based techniques. IEEE conference publication, ISSN 0537-9989, issue 443: 809–813.
  18. E. Pietka, A. Gertych, S. Pospiech, F. Cao, H. K. Huang, and V. Gilsanz. 2001. Computer-assisted bone age assessment: Image preprocessing and epiphyseal/ metaphyseal ROI extraction. IEEE Trans. Med. Imag. , vol. 20, no. 8, pp. 715–729.
  19. M. Niemeijer, B. van Ginneken, C. Maas, F. Beek, and M. Viergever. 2003. Assessing the skeletal age from a hand radiograph: Automating the Tanner-Whitehouse method. in Proc. Med. Imaging, SPIE, vol. 5032, pp. 1197–1205.
  20. Miguel A. Martin-Fernandez, Marcos Martin-Fernandez, Carlos Alberola-Lopez. 2003. Automatic bone age assessment: a registration approach. Medical Imaging 2003: Image Processing, Proceedings of SPIE, vol. 5032, pp. 1765-1776.
  21. Santiago Aja-Fernandez, Rodrigo de Luis-Garcia, Miguel Angel Mart?n-Fernandez, Carlos Alberola-Lopez. 2004. A computational TW3 classifier for skeletal maturity assessment: A Computing with Words approach. Journal of Biomedical Informatics, vol. 37, no. 2, pp. 99–107.
  22. R. de Luis, M. Mart?n, J. I. Arribas, and C. Alberola. 2003. A fully automatic algorithm for contour detection of bones in hand radiographies using active contours. Proc. IEEE Int. Conf. Image Process. , vol. 2, pp. 421-424.
  23. Pan Lin, Feng Zhang, Yong Yang, Chong-Xun Zheng. 2004. Carpal-Bone Feature Extraction Analysis in Skeletal Age Assessment Based on Deformable Model. Journal of Computer Science and Technology , vol. 4, no. 3, pp. 152-156.
  24. A. Tristan-Vega and J. I. Arribas. 2008. A radius and ulna TW3 bone age assessment system. IEEE Trans Biomed Eng, vol. 55, pp. 1463–1476.
  25. A. Zhang , A. Gertych , B. Liu. 2007. Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones. Computerized Medical Imaging and Graphics , vol. 31 , Issue 4 - 5 , pp. 299 – 310.
  26. H. Thodberg, S. Kreiborg, A. Juul, and K. Pedersen. 2009. The Bone Xpert Method for Automated Determination of Skeletal Maturity. IEEE Trans Med Imaging, vol. 28, no. 1, pp. 52–66.
  27. D. Giordano, R. Leonardi, F. Maiorana, G. Scarciofalo, and C. Spampinato. 2007. Epiphysis and Metaphysis Extraction and Classification by Adaptive Thresholding and Dog Filtering for Automated Skeletal Bone Age Analysis. in Proc. of the 29th Conference on IEEE Engineering in Medicine and Biology Society, pp. 6551–6556.
  28. Chi-Wen Hsieh, Tai-Lang Jong, Yi-Hong Chou and Chui-Mei Tiu. 2007. Computerized geometric features of carpal bone for bone age estimation. Chinese Medical Journal, 120(9):767-770.
  29. Zhao Liu, Jian Liu, Jianxun Chen, Linquan Yang. 2007. Automatic Bone Age Assessment Based on PSO. IEEE.
  30. D. Giordano, C. Spampinato, G. Scarciofalo, R. Leonardi. 2010. An Automatic System for Skeletal Bone Age Measurement by Robust Processing of Carpal and Epiphysial/Metaphysial Bones. IEEE Trans. On Instrumentation and Measurement, vol. 59, issue 10, pp. 2539-2553.
  31. P. Thangam, K. Thanushkodi, T. V. Mahendiran. 2011. Skeletal Bone Age Assessment – Research Directions. International Journal of Advanced Research in Computer Science, vol. 2, No. 5, pp. 415 - 423.
  32. P. Thangam, K. Thanushkodi, T. V. Mahendiran. 2012. Computerized Convex Hull Method of Skeletal Bone Age Assessment from Carpal Bones. European Journal of Scientific Research, Vol. 70 No. 3, pp. 334-344.
  33. P. Thangam, K. Thanushkodi, T. V. Mahendiran. 2012. Efficient Skeletal Bone Age Estimation Method using Carpal and Radius Bone features. Journal of Scientific and Industrial Research, Vol. 71, No. 7, July 2012, in press.
  34. P. Thangam, K. Thanushkodi, T. V. Mahendiran, "Computerized Skeletal Bone Age Assessment from Radius and Ulna bones. International Journal of Systems, Applications and Algorithms, Vol. 2, Issue 5, May 2012, in press.
  35. P. Thangam, K. Thanushkodi, T. V. Mahendiran, "Skeletal Bone Age Assessment from Epiphysis/Metaphysis of phalanges using Hausdorff distance", unpublished.
  36. Chuck Ballard, Dirk Herreman, Don Schau, Rhonda Bell, Eunsaeng Kim and Ann Valencic, Data Modeling Techniques for Data Warehousing, IBM Redbooks, 1998.
  37. Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and Techniques, Morgan Kaufmann, Third edition, 2011.
Index Terms

Computer Science
Information Sciences

Keywords

Skeletal Bone Age Assessment (baa) Tw2 Radiograph Classification Partitioning