CFP last date
20 January 2025
Reseach Article

On The Fractional Systems Fault Detection: Evaluation of Fractional Residual

by Asma Aribi, Mohamed Aoun, Slaheddine Najar, Mohamed Naceur Abdelkrim
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 45 - Number 17
Year of Publication: 2012
Authors: Asma Aribi, Mohamed Aoun, Slaheddine Najar, Mohamed Naceur Abdelkrim
10.5120/7005-9574

Asma Aribi, Mohamed Aoun, Slaheddine Najar, Mohamed Naceur Abdelkrim . On The Fractional Systems Fault Detection: Evaluation of Fractional Residual. International Journal of Computer Applications. 45, 17 ( May 2012), 37-43. DOI=10.5120/7005-9574

@article{ 10.5120/7005-9574,
author = { Asma Aribi, Mohamed Aoun, Slaheddine Najar, Mohamed Naceur Abdelkrim },
title = { On The Fractional Systems Fault Detection: Evaluation of Fractional Residual },
journal = { International Journal of Computer Applications },
issue_date = { May 2012 },
volume = { 45 },
number = { 17 },
month = { May },
year = { 2012 },
issn = { 0975-8887 },
pages = { 37-43 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume45/number17/7005-9574/ },
doi = { 10.5120/7005-9574 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:37:53.438333+05:30
%A Asma Aribi
%A Mohamed Aoun
%A Slaheddine Najar
%A Mohamed Naceur Abdelkrim
%T On The Fractional Systems Fault Detection: Evaluation of Fractional Residual
%J International Journal of Computer Applications
%@ 0975-8887
%V 45
%N 17
%P 37-43
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The paper deals with fractional residual evaluation. Three methods to evaluate fractional residuals generated by dynamic parity space method are presented. They are based on the fractional derivative approximations: the Grunwald, the pole-zero and the Diethelm approximations. They are compared in order to select the best method in terms of precision and minimum detection time delay. The selected method is used to evaluate residual of a real system.

References
  1. J. Sabatier, M. Aoun, A. Oustaloup, G. Grégoire,F. Ragot, and P. Roy, "Fractional system identification for lead acid battery state of charge estimation," Signal Processing, vol. 86, no. 10, pp. 2645–2657,2006.
  2. K. B. Oldham, "Diffusive transport to planar, cylindrical and spherical electrodes," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 41, no. 3, pp. 351–358, 1973.
  3. J. L. Battaglia, O. Cois, L. Puigsegur, and A. Oustaloup, "Solving an inverse heat conduction problem using a non-integer identified model," International Journal of Heat and Mass Transfer, vol. 44, no. 14, pp. 2671–2680, 2001.
  4. A. Oustaloup, B. Mathieu, et al. , La commande CRONE: du scalaire au multivariable, Hermès science publications, 1999.
  5. P. Lanusse and A. Oustaloup, "De la commande crone de première génération àla commande cronede troisième generation," 1994.
  6. J. Sabatier, A. Garcia Iturricha, A. Oustaloup, et al. ,"Commande crone de systèmes linéaires non stationnaires échantillonnés à coefficients périodiques," 2001.
  7. P. Lanusse-De la commande CRONE, de premièregénération à la commande CRONE de troisièmegénération, Ph. D. thesis, Thèse de Doctorat de l'Université Bordeaux 1, 1994.
  8. M. Dalir andM. Bashour, "Applications of fractional calculus," AppliedMathematical Sciences, vol. 4, no. 21, pp. 1021–1032, 2010.
  9. R. Malti, M. Aoun, J. Sabatier, A. Oustaloup, et al. ,"Tutorial on system identification using fractional differentiation models," 2006.
  10. R. Malti, S. Victor, A. Oustaloup, H. Garnier,et al. , "An optimal instrumental variable method for continuous-time fractional model identification,"2008.
  11. M. Aoun, A. Aribi, S. Najar, and M. N. Abdelkrim,"On the fractional systems' fault detection: A comparison between fractional and rational residual sensitivity," in Systems, Signals and Devices (SSD),2011 8th International Multi-Conference on. IEEE,pp. 1–6.
  12. I. Podlubny, Fractional differential equations:(an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications), Academic press, 1999.
  13. M. Aoun, M. Amairi, S. Najar, and MN Abdelkrim, "Simulation method of fractional systems based on the discrete-time approximation of the caputo fractional derivatives," in Systems, Signals and Devices (SSD), 2011 8th International Multi-Conference on. IEEE, pp. 1–6.
  14. M. Caputo and F. Mainardi, "A new dissipation model based on memory mechanism," Pure and Applied Geophysics, vol. 91, no. 1, pp. 134–147, 1971.
  15. AK Grunwald, "¨Uber begrenzte derivationen undderen anwendung," Zeitshrift f¨ur angewandte Mathematik und Physik, vol. 12, pp. 441–480, 1867.
  16. K. Diethelm, N. J. Ford, A. D. Freed, and Y. Luchko, "Algorithms for the fractional calculus: a selection of numerical methods," Computer methods in applied mechanics and engineering, vol. 194, no. 6-8,pp. 743–773, 2005.
  17. A. Oustaloup, La d´erivation non enti`ere: théorie,synthèse et applications, Hermès, Paris, 1995.
  18. M. Aoun, Systèmes linéeaires non entiers et identification par bases orthogonales non entières, Ph. D. thesis, Université Bordeaux 1, France, 10 2005.
  19. K. -S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations,A Wiley-Interscience Publication, 1993.
  20. M. Amairi,M. Aoun, S. Najar, and M. N. Abdelkrim, "Interval analysis approach for frequency domain identification of a non integer order electronic system," 10th International conference on Sciences and Techniques of Automatic control & computer engineering, Academic Publication Center of Tunis,Tunisia, 2009.
Index Terms

Computer Science
Information Sciences

Keywords

Fractional Residual Residual Evaluation Fractional Derivative Approximation Electronic Device